Whakaoti mō x_1, x_2
x_{1}=3-x_{3}
x_{2}=x_{3}-1
Tohaina
Kua tāruatia ki te papatopenga
2x_{1}+2x_{3}=6,3x_{1}+x_{2}+2x_{3}=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x_{1}+2x_{3}=6
Tīpakohia tētahi o ngā whārite e rua he māmā ake ki te whakaoti mō te x_{1} mā te wehe i te x_{1} i te taha mauī o te tohu ōrite.
2x_{1}=6-2x_{3}
Me tango 2x_{3} mai i ngā taha e rua o te whārite.
x_{1}=3-x_{3}
Whakawehea ngā taha e rua ki te 2.
3\left(3-x_{3}\right)+x_{2}+2x_{3}=8
Whakakapia te 3-x_{3} mō te x_{1} ki tērā atu whārite, 3x_{1}+x_{2}+2x_{3}=8.
9-3x_{3}+x_{2}+2x_{3}=8
Whakareatia 3 ki te 3-x_{3}.
x_{2}+9-x_{3}=8
Tāpiri 9-3x_{3} ki te 2x_{3}.
x_{2}=x_{3}-1
Me tango 9-x_{3} mai i ngā taha e rua o te whārite.
x_{1}=3-x_{3},x_{2}=x_{3}-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}