Whakaoti mō x, y, z
x=3
y=1
z=1
Tohaina
Kua tāruatia ki te papatopenga
y=3x+z-9
Me whakaoti te 3x-y+z=9 mō y.
2x+3x+z-9-2z=5 -x+4\left(3x+z-9\right)-z=0
Whakakapia te 3x+z-9 mō te y i te whārite tuarua me te tuatoru.
x=\frac{14}{5}+\frac{1}{5}z z=-\frac{11}{3}x+12
Me whakaoti ēnei whārite mō x me z takitahi.
z=-\frac{11}{3}\left(\frac{14}{5}+\frac{1}{5}z\right)+12
Whakakapia te \frac{14}{5}+\frac{1}{5}z mō te x i te whārite z=-\frac{11}{3}x+12.
z=1
Me whakaoti te z=-\frac{11}{3}\left(\frac{14}{5}+\frac{1}{5}z\right)+12 mō z.
x=\frac{14}{5}+\frac{1}{5}\times 1
Whakakapia te 1 mō te z i te whārite x=\frac{14}{5}+\frac{1}{5}z.
x=3
Tātaitia te x i te x=\frac{14}{5}+\frac{1}{5}\times 1.
y=3\times 3+1-9
Whakakapia te 3 mō te x me te 1 mō z i te whārite y=3x+z-9.
y=1
Tātaitia te y i te y=3\times 3+1-9.
x=3 y=1 z=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}