Whakaoti mō x, y
x=-5\text{, }y=5
x=5\text{, }y=-5
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+y=0,-2y^{2}+3x^{2}=25
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+y=0
Whakaotia te x+y=0 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-y
Me tango y mai i ngā taha e rua o te whārite.
-2y^{2}+3\left(-y\right)^{2}=25
Whakakapia te -y mō te x ki tērā atu whārite, -2y^{2}+3x^{2}=25.
-2y^{2}+3y^{2}=25
Pūrua -y.
y^{2}=25
Tāpiri -2y^{2} ki te 3y^{2}.
y^{2}-25=0
Me tango 25 mai i ngā taha e rua o te whārite.
y=\frac{0±\sqrt{0^{2}-4\left(-25\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2+3\left(-1\right)^{2} mō a, 3\times 0\left(-1\right)\times 2 mō b, me -25 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\left(-25\right)}}{2}
Pūrua 3\times 0\left(-1\right)\times 2.
y=\frac{0±\sqrt{100}}{2}
Whakareatia -4 ki te -25.
y=\frac{0±10}{2}
Tuhia te pūtakerua o te 100.
y=5
Nā, me whakaoti te whārite y=\frac{0±10}{2} ina he tāpiri te ±. Whakawehe 10 ki te 2.
y=-5
Nā, me whakaoti te whārite y=\frac{0±10}{2} ina he tango te ±. Whakawehe -10 ki te 2.
x=-5
E rua ngā otinga mō y: 5 me -5. Me whakakapi 5 mō y ki te whārite x=-y hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=-\left(-5\right)
Me whakakapi te -5 ināianei mō te y ki te whārite x=-y ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=5
Whakareatia -1 ki te -5.
x=-5,y=5\text{ or }x=5,y=-5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}