Tīpoka ki ngā ihirangi matua
Whakaoti mō I_1, I_2, I_3
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

I_{1}=I_{2}-I_{3} 14=10I_{3}+6I_{2} 21=5I_{1}+6I_{2}
Me raupapa anō ngā whārite.
21=5\left(I_{2}-I_{3}\right)+6I_{2}
Whakakapia te I_{2}-I_{3} mō te I_{1} i te whārite 21=5I_{1}+6I_{2}.
I_{2}=\frac{7}{3}-\frac{5}{3}I_{3} I_{3}=\frac{11}{5}I_{2}-\frac{21}{5}
Me whakaoti te whārite tuarua mō I_{2} me te whārite tuatoru mō I_{3}.
I_{3}=\frac{11}{5}\left(\frac{7}{3}-\frac{5}{3}I_{3}\right)-\frac{21}{5}
Whakakapia te \frac{7}{3}-\frac{5}{3}I_{3} mō te I_{2} i te whārite I_{3}=\frac{11}{5}I_{2}-\frac{21}{5}.
I_{3}=\frac{1}{5}
Me whakaoti te I_{3}=\frac{11}{5}\left(\frac{7}{3}-\frac{5}{3}I_{3}\right)-\frac{21}{5} mō I_{3}.
I_{2}=\frac{7}{3}-\frac{5}{3}\times \frac{1}{5}
Whakakapia te \frac{1}{5} mō te I_{3} i te whārite I_{2}=\frac{7}{3}-\frac{5}{3}I_{3}.
I_{2}=2
Tātaitia te I_{2} i te I_{2}=\frac{7}{3}-\frac{5}{3}\times \frac{1}{5}.
I_{1}=2-\frac{1}{5}
Whakakapia te 2 mō te I_{2} me te \frac{1}{5} mō I_{3} i te whārite I_{1}=I_{2}-I_{3}.
I_{1}=\frac{9}{5}
Tātaitia te I_{1} i te I_{1}=2-\frac{1}{5}.
I_{1}=\frac{9}{5} I_{2}=2 I_{3}=\frac{1}{5}
Kua oti te pūnaha te whakatau.