Whakaoti mō x, y
x=7
y=10
Graph
Pātaitai
Simultaneous Equation
\left. \begin{array}{l}{ 2 x - y = 4 }\\{ y = x + 3 }\end{array} \right.
Tohaina
Kua tāruatia ki te papatopenga
y-x=3
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2x-y=4,-x+y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=y+4
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(y+4\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{1}{2}y+2
Whakareatia \frac{1}{2} ki te y+4.
-\left(\frac{1}{2}y+2\right)+y=3
Whakakapia te \frac{y}{2}+2 mō te x ki tērā atu whārite, -x+y=3.
-\frac{1}{2}y-2+y=3
Whakareatia -1 ki te \frac{y}{2}+2.
\frac{1}{2}y-2=3
Tāpiri -\frac{y}{2} ki te y.
\frac{1}{2}y=5
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=10
Me whakarea ngā taha e rua ki te 2.
x=\frac{1}{2}\times 10+2
Whakaurua te 10 mō y ki x=\frac{1}{2}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5+2
Whakareatia \frac{1}{2} ki te 10.
x=7
Tāpiri 2 ki te 5.
x=7,y=10
Kua oti te pūnaha te whakatau.
y-x=3
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2x-y=4,-x+y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-1\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\-1&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-\left(-1\right)\right)}&-\frac{-1}{2-\left(-\left(-1\right)\right)}\\-\frac{-1}{2-\left(-\left(-1\right)\right)}&\frac{2}{2-\left(-\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&1\\1&2\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4+3\\4+2\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\10\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=10
Tangohia ngā huānga poukapa x me y.
y-x=3
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
2x-y=4,-x+y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x-\left(-y\right)=-4,2\left(-1\right)x+2y=2\times 3
Kia ōrite ai a 2x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-2x+y=-4,-2x+2y=6
Whakarūnātia.
-2x+2x+y-2y=-4-6
Me tango -2x+2y=6 mai i -2x+y=-4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
y-2y=-4-6
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=-4-6
Tāpiri y ki te -2y.
-y=-10
Tāpiri -4 ki te -6.
y=10
Whakawehea ngā taha e rua ki te -1.
-x+10=3
Whakaurua te 10 mō y ki -x+y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x=-7
Me tango 10 mai i ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te -1.
x=7,y=10
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}