Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-2y=1
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
2x+5y=11,x-2y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+5y=11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-5y+11
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-5y+11\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{5}{2}y+\frac{11}{2}
Whakareatia \frac{1}{2} ki te -5y+11.
-\frac{5}{2}y+\frac{11}{2}-2y=1
Whakakapia te \frac{-5y+11}{2} mō te x ki tērā atu whārite, x-2y=1.
-\frac{9}{2}y+\frac{11}{2}=1
Tāpiri -\frac{5y}{2} ki te -2y.
-\frac{9}{2}y=-\frac{9}{2}
Me tango \frac{11}{2} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-5+11}{2}
Whakaurua te 1 mō y ki x=-\frac{5}{2}y+\frac{11}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri \frac{11}{2} ki te -\frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=1
Kua oti te pūnaha te whakatau.
x-2y=1
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
2x+5y=11,x-2y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&5\\1&-2\end{matrix}\right))\left(\begin{matrix}2&5\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-2\end{matrix}\right))\left(\begin{matrix}11\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&5\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-2\end{matrix}\right))\left(\begin{matrix}11\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\1&-2\end{matrix}\right))\left(\begin{matrix}11\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-5}&-\frac{5}{2\left(-2\right)-5}\\-\frac{1}{2\left(-2\right)-5}&\frac{2}{2\left(-2\right)-5}\end{matrix}\right)\left(\begin{matrix}11\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}&\frac{5}{9}\\\frac{1}{9}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}11\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{9}\times 11+\frac{5}{9}\\\frac{1}{9}\times 11-\frac{2}{9}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=1
Tangohia ngā huānga poukapa x me y.
x-2y=1
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
2x+5y=11,x-2y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+5y=11,2x+2\left(-2\right)y=2
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+5y=11,2x-4y=2
Whakarūnātia.
2x-2x+5y+4y=11-2
Me tango 2x-4y=2 mai i 2x+5y=11 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5y+4y=11-2
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9y=11-2
Tāpiri 5y ki te 4y.
9y=9
Tāpiri 11 ki te -2.
y=1
Whakawehea ngā taha e rua ki te 9.
x-2=1
Whakaurua te 1 mō y ki x-2y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=3,y=1
Kua oti te pūnaha te whakatau.