Whakaoti mō c, a, b
c=2
a = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
b = -\frac{28}{3} = -9\frac{1}{3} \approx -9.333333333
Tohaina
Kua tāruatia ki te papatopenga
c=2
Me whakaoti te 2=c mō c.
18=16a+4b+2 8=-a-b+2
Whakakapia te 2 mō te c i te whārite tuarua me te tuatoru.
a=1-\frac{1}{4}b b=-a-6
Me whakaoti ēnei whārite mō a me b takitahi.
b=-\left(1-\frac{1}{4}b\right)-6
Whakakapia te 1-\frac{1}{4}b mō te a i te whārite b=-a-6.
b=-\frac{28}{3}
Me whakaoti te b=-\left(1-\frac{1}{4}b\right)-6 mō b.
a=1-\frac{1}{4}\left(-\frac{28}{3}\right)
Whakakapia te -\frac{28}{3} mō te b i te whārite a=1-\frac{1}{4}b.
a=\frac{10}{3}
Tātaitia te a i te a=1-\frac{1}{4}\left(-\frac{28}{3}\right).
c=2 a=\frac{10}{3} b=-\frac{28}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}