Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-5x+y=-11,4x-6y=14
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-5x+y=-11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-5x=-y-11
Me tango y mai i ngā taha e rua o te whārite.
x=-\frac{1}{5}\left(-y-11\right)
Whakawehea ngā taha e rua ki te -5.
x=\frac{1}{5}y+\frac{11}{5}
Whakareatia -\frac{1}{5} ki te -y-11.
4\left(\frac{1}{5}y+\frac{11}{5}\right)-6y=14
Whakakapia te \frac{11+y}{5} mō te x ki tērā atu whārite, 4x-6y=14.
\frac{4}{5}y+\frac{44}{5}-6y=14
Whakareatia 4 ki te \frac{11+y}{5}.
-\frac{26}{5}y+\frac{44}{5}=14
Tāpiri \frac{4y}{5} ki te -6y.
-\frac{26}{5}y=\frac{26}{5}
Me tango \frac{44}{5} mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te -\frac{26}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{5}\left(-1\right)+\frac{11}{5}
Whakaurua te -1 mō y ki x=\frac{1}{5}y+\frac{11}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-1+11}{5}
Whakareatia \frac{1}{5} ki te -1.
x=2
Tāpiri \frac{11}{5} ki te -\frac{1}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-1
Kua oti te pūnaha te whakatau.
-5x+y=-11,4x-6y=14
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\14\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-5&1\\4&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&1\\4&-6\end{matrix}\right))\left(\begin{matrix}-11\\14\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{-5\left(-6\right)-4}&-\frac{1}{-5\left(-6\right)-4}\\-\frac{4}{-5\left(-6\right)-4}&-\frac{5}{-5\left(-6\right)-4}\end{matrix}\right)\left(\begin{matrix}-11\\14\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{13}&-\frac{1}{26}\\-\frac{2}{13}&-\frac{5}{26}\end{matrix}\right)\left(\begin{matrix}-11\\14\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{13}\left(-11\right)-\frac{1}{26}\times 14\\-\frac{2}{13}\left(-11\right)-\frac{5}{26}\times 14\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-1
Tangohia ngā huānga poukapa x me y.
-5x+y=-11,4x-6y=14
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\left(-5\right)x+4y=4\left(-11\right),-5\times 4x-5\left(-6\right)y=-5\times 14
Kia ōrite ai a -5x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -5.
-20x+4y=-44,-20x+30y=-70
Whakarūnātia.
-20x+20x+4y-30y=-44+70
Me tango -20x+30y=-70 mai i -20x+4y=-44 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-30y=-44+70
Tāpiri -20x ki te 20x. Ka whakakore atu ngā kupu -20x me 20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-26y=-44+70
Tāpiri 4y ki te -30y.
-26y=26
Tāpiri -44 ki te 70.
y=-1
Whakawehea ngā taha e rua ki te -26.
4x-6\left(-1\right)=14
Whakaurua te -1 mō y ki 4x-6y=14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+6=14
Whakareatia -6 ki te -1.
4x=8
Me tango 6 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 4.
x=2,y=-1
Kua oti te pūnaha te whakatau.