Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

25x^{2}-16y^{2}=400
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 400, arā, te tauraro pātahi he tino iti rawa te kitea o 16,25.
125x-48y=481,-16y^{2}+25x^{2}=400
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
125x-48y=481
Whakaotia te 125x-48y=481 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
125x=48y+481
Me tango -48y mai i ngā taha e rua o te whārite.
x=\frac{48}{125}y+\frac{481}{125}
Whakawehea ngā taha e rua ki te 125.
-16y^{2}+25\left(\frac{48}{125}y+\frac{481}{125}\right)^{2}=400
Whakakapia te \frac{48}{125}y+\frac{481}{125} mō te x ki tērā atu whārite, -16y^{2}+25x^{2}=400.
-16y^{2}+25\left(\frac{2304}{15625}y^{2}+\frac{46176}{15625}y+\frac{231361}{15625}\right)=400
Pūrua \frac{48}{125}y+\frac{481}{125}.
-16y^{2}+\frac{2304}{625}y^{2}+\frac{46176}{625}y+\frac{231361}{625}=400
Whakareatia 25 ki te \frac{2304}{15625}y^{2}+\frac{46176}{15625}y+\frac{231361}{15625}.
-\frac{7696}{625}y^{2}+\frac{46176}{625}y+\frac{231361}{625}=400
Tāpiri -16y^{2} ki te \frac{2304}{625}y^{2}.
-\frac{7696}{625}y^{2}+\frac{46176}{625}y-\frac{18639}{625}=0
Me tango 400 mai i ngā taha e rua o te whārite.
y=\frac{-\frac{46176}{625}±\sqrt{\left(\frac{46176}{625}\right)^{2}-4\left(-\frac{7696}{625}\right)\left(-\frac{18639}{625}\right)}}{2\left(-\frac{7696}{625}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -16+25\times \left(\frac{48}{125}\right)^{2} mō a, 25\times \frac{481}{125}\times \frac{48}{125}\times 2 mō b, me -\frac{18639}{625} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{46176}{625}±\sqrt{\frac{2132222976}{390625}-4\left(-\frac{7696}{625}\right)\left(-\frac{18639}{625}\right)}}{2\left(-\frac{7696}{625}\right)}
Pūrua 25\times \frac{481}{125}\times \frac{48}{125}\times 2.
y=\frac{-\frac{46176}{625}±\sqrt{\frac{2132222976}{390625}+\frac{30784}{625}\left(-\frac{18639}{625}\right)}}{2\left(-\frac{7696}{625}\right)}
Whakareatia -4 ki te -16+25\times \left(\frac{48}{125}\right)^{2}.
y=\frac{-\frac{46176}{625}±\sqrt{\frac{2132222976-573782976}{390625}}}{2\left(-\frac{7696}{625}\right)}
Whakareatia \frac{30784}{625} ki te -\frac{18639}{625} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{-\frac{46176}{625}±\sqrt{\frac{2493504}{625}}}{2\left(-\frac{7696}{625}\right)}
Tāpiri \frac{2132222976}{390625} ki te -\frac{573782976}{390625} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{-\frac{46176}{625}±\frac{72\sqrt{481}}{25}}{2\left(-\frac{7696}{625}\right)}
Tuhia te pūtakerua o te \frac{2493504}{625}.
y=\frac{-\frac{46176}{625}±\frac{72\sqrt{481}}{25}}{-\frac{15392}{625}}
Whakareatia 2 ki te -16+25\times \left(\frac{48}{125}\right)^{2}.
y=\frac{\frac{72\sqrt{481}}{25}-\frac{46176}{625}}{-\frac{15392}{625}}
Nā, me whakaoti te whārite y=\frac{-\frac{46176}{625}±\frac{72\sqrt{481}}{25}}{-\frac{15392}{625}} ina he tāpiri te ±. Tāpiri -\frac{46176}{625} ki te \frac{72\sqrt{481}}{25}.
y=-\frac{225\sqrt{481}}{1924}+3
Whakawehe -\frac{46176}{625}+\frac{72\sqrt{481}}{25} ki te -\frac{15392}{625} mā te whakarea -\frac{46176}{625}+\frac{72\sqrt{481}}{25} ki te tau huripoki o -\frac{15392}{625}.
y=\frac{-\frac{72\sqrt{481}}{25}-\frac{46176}{625}}{-\frac{15392}{625}}
Nā, me whakaoti te whārite y=\frac{-\frac{46176}{625}±\frac{72\sqrt{481}}{25}}{-\frac{15392}{625}} ina he tango te ±. Tango \frac{72\sqrt{481}}{25} mai i -\frac{46176}{625}.
y=\frac{225\sqrt{481}}{1924}+3
Whakawehe -\frac{46176}{625}-\frac{72\sqrt{481}}{25} ki te -\frac{15392}{625} mā te whakarea -\frac{46176}{625}-\frac{72\sqrt{481}}{25} ki te tau huripoki o -\frac{15392}{625}.
x=\frac{48}{125}\left(-\frac{225\sqrt{481}}{1924}+3\right)+\frac{481}{125}
E rua ngā otinga mō y: 3-\frac{225\sqrt{481}}{1924} me 3+\frac{225\sqrt{481}}{1924}. Me whakakapi 3-\frac{225\sqrt{481}}{1924} mō y ki te whārite x=\frac{48}{125}y+\frac{481}{125} hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{48\left(-\frac{225\sqrt{481}}{1924}+3\right)+481}{125}
Whakareatia \frac{48}{125} ki te 3-\frac{225\sqrt{481}}{1924}.
x=\frac{48}{125}\left(\frac{225\sqrt{481}}{1924}+3\right)+\frac{481}{125}
Me whakakapi te 3+\frac{225\sqrt{481}}{1924} ināianei mō te y ki te whārite x=\frac{48}{125}y+\frac{481}{125} ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{48\left(\frac{225\sqrt{481}}{1924}+3\right)+481}{125}
Whakareatia \frac{48}{125} ki te 3+\frac{225\sqrt{481}}{1924}.
x=\frac{48\left(-\frac{225\sqrt{481}}{1924}+3\right)+481}{125},y=-\frac{225\sqrt{481}}{1924}+3\text{ or }x=\frac{48\left(\frac{225\sqrt{481}}{1924}+3\right)+481}{125},y=\frac{225\sqrt{481}}{1924}+3
Kua oti te pūnaha te whakatau.