Whakaoti mō x, y
x=-\frac{108\sqrt{481}}{2405}+5\approx 4.015124774\text{, }y=-\frac{225\sqrt{481}}{1924}+3\approx 0.435220767
x=\frac{108\sqrt{481}}{2405}+5\approx 5.984875226\text{, }y=\frac{225\sqrt{481}}{1924}+3\approx 5.564779233
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x^{2}-16y^{2}=400
Whakaarohia te whārite tuatahi. Me whakarea ngā taha e rua o te whārite ki te 400, arā, te tauraro pātahi he tino iti rawa te kitea o 16,25.
125x-48y=481,-16y^{2}+25x^{2}=400
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
125x-48y=481
Whakaotia te 125x-48y=481 mō x mā te wehe i te x i te taha mauī o te tohu ōrite.
125x=48y+481
Me tango -48y mai i ngā taha e rua o te whārite.
x=\frac{48}{125}y+\frac{481}{125}
Whakawehea ngā taha e rua ki te 125.
-16y^{2}+25\left(\frac{48}{125}y+\frac{481}{125}\right)^{2}=400
Whakakapia te \frac{48}{125}y+\frac{481}{125} mō te x ki tērā atu whārite, -16y^{2}+25x^{2}=400.
-16y^{2}+25\left(\frac{2304}{15625}y^{2}+\frac{46176}{15625}y+\frac{231361}{15625}\right)=400
Pūrua \frac{48}{125}y+\frac{481}{125}.
-16y^{2}+\frac{2304}{625}y^{2}+\frac{46176}{625}y+\frac{231361}{625}=400
Whakareatia 25 ki te \frac{2304}{15625}y^{2}+\frac{46176}{15625}y+\frac{231361}{15625}.
-\frac{7696}{625}y^{2}+\frac{46176}{625}y+\frac{231361}{625}=400
Tāpiri -16y^{2} ki te \frac{2304}{625}y^{2}.
-\frac{7696}{625}y^{2}+\frac{46176}{625}y-\frac{18639}{625}=0
Me tango 400 mai i ngā taha e rua o te whārite.
y=\frac{-\frac{46176}{625}±\sqrt{\left(\frac{46176}{625}\right)^{2}-4\left(-\frac{7696}{625}\right)\left(-\frac{18639}{625}\right)}}{2\left(-\frac{7696}{625}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -16+25\times \left(\frac{48}{125}\right)^{2} mō a, 25\times \frac{481}{125}\times \frac{48}{125}\times 2 mō b, me -\frac{18639}{625} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\frac{46176}{625}±\sqrt{\frac{2132222976}{390625}-4\left(-\frac{7696}{625}\right)\left(-\frac{18639}{625}\right)}}{2\left(-\frac{7696}{625}\right)}
Pūrua 25\times \frac{481}{125}\times \frac{48}{125}\times 2.
y=\frac{-\frac{46176}{625}±\sqrt{\frac{2132222976}{390625}+\frac{30784}{625}\left(-\frac{18639}{625}\right)}}{2\left(-\frac{7696}{625}\right)}
Whakareatia -4 ki te -16+25\times \left(\frac{48}{125}\right)^{2}.
y=\frac{-\frac{46176}{625}±\sqrt{\frac{2132222976-573782976}{390625}}}{2\left(-\frac{7696}{625}\right)}
Whakareatia \frac{30784}{625} ki te -\frac{18639}{625} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{-\frac{46176}{625}±\sqrt{\frac{2493504}{625}}}{2\left(-\frac{7696}{625}\right)}
Tāpiri \frac{2132222976}{390625} ki te -\frac{573782976}{390625} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{-\frac{46176}{625}±\frac{72\sqrt{481}}{25}}{2\left(-\frac{7696}{625}\right)}
Tuhia te pūtakerua o te \frac{2493504}{625}.
y=\frac{-\frac{46176}{625}±\frac{72\sqrt{481}}{25}}{-\frac{15392}{625}}
Whakareatia 2 ki te -16+25\times \left(\frac{48}{125}\right)^{2}.
y=\frac{\frac{72\sqrt{481}}{25}-\frac{46176}{625}}{-\frac{15392}{625}}
Nā, me whakaoti te whārite y=\frac{-\frac{46176}{625}±\frac{72\sqrt{481}}{25}}{-\frac{15392}{625}} ina he tāpiri te ±. Tāpiri -\frac{46176}{625} ki te \frac{72\sqrt{481}}{25}.
y=-\frac{225\sqrt{481}}{1924}+3
Whakawehe -\frac{46176}{625}+\frac{72\sqrt{481}}{25} ki te -\frac{15392}{625} mā te whakarea -\frac{46176}{625}+\frac{72\sqrt{481}}{25} ki te tau huripoki o -\frac{15392}{625}.
y=\frac{-\frac{72\sqrt{481}}{25}-\frac{46176}{625}}{-\frac{15392}{625}}
Nā, me whakaoti te whārite y=\frac{-\frac{46176}{625}±\frac{72\sqrt{481}}{25}}{-\frac{15392}{625}} ina he tango te ±. Tango \frac{72\sqrt{481}}{25} mai i -\frac{46176}{625}.
y=\frac{225\sqrt{481}}{1924}+3
Whakawehe -\frac{46176}{625}-\frac{72\sqrt{481}}{25} ki te -\frac{15392}{625} mā te whakarea -\frac{46176}{625}-\frac{72\sqrt{481}}{25} ki te tau huripoki o -\frac{15392}{625}.
x=\frac{48}{125}\left(-\frac{225\sqrt{481}}{1924}+3\right)+\frac{481}{125}
E rua ngā otinga mō y: 3-\frac{225\sqrt{481}}{1924} me 3+\frac{225\sqrt{481}}{1924}. Me whakakapi 3-\frac{225\sqrt{481}}{1924} mō y ki te whārite x=\frac{48}{125}y+\frac{481}{125} hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{48\left(-\frac{225\sqrt{481}}{1924}+3\right)+481}{125}
Whakareatia \frac{48}{125} ki te 3-\frac{225\sqrt{481}}{1924}.
x=\frac{48}{125}\left(\frac{225\sqrt{481}}{1924}+3\right)+\frac{481}{125}
Me whakakapi te 3+\frac{225\sqrt{481}}{1924} ināianei mō te y ki te whārite x=\frac{48}{125}y+\frac{481}{125} ka whakaoti hei kimi i te otinga hāngai mō x e pai ai ki ngā whārite e rua.
x=\frac{48\left(\frac{225\sqrt{481}}{1924}+3\right)+481}{125}
Whakareatia \frac{48}{125} ki te 3+\frac{225\sqrt{481}}{1924}.
x=\frac{48\left(-\frac{225\sqrt{481}}{1924}+3\right)+481}{125},y=-\frac{225\sqrt{481}}{1924}+3\text{ or }x=\frac{48\left(\frac{225\sqrt{481}}{1924}+3\right)+481}{125},y=\frac{225\sqrt{481}}{1924}+3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}