Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-7y=-11,5x+2y=-18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x-7y=-11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=7y-11
Me tāpiri 7y ki ngā taha e rua o te whārite.
5\left(7y-11\right)+2y=-18
Whakakapia te 7y-11 mō te x ki tērā atu whārite, 5x+2y=-18.
35y-55+2y=-18
Whakareatia 5 ki te 7y-11.
37y-55=-18
Tāpiri 35y ki te 2y.
37y=37
Me tāpiri 55 ki ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te 37.
x=7-11
Whakaurua te 1 mō y ki x=7y-11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-4
Tāpiri -11 ki te 7.
x=-4,y=1
Kua oti te pūnaha te whakatau.
x-7y=-11,5x+2y=-18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-7\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\-18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}1&-7\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}-11\\-18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-7\\5&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}-11\\-18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7\\5&2\end{matrix}\right))\left(\begin{matrix}-11\\-18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-7\times 5\right)}&-\frac{-7}{2-\left(-7\times 5\right)}\\-\frac{5}{2-\left(-7\times 5\right)}&\frac{1}{2-\left(-7\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-11\\-18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{37}&\frac{7}{37}\\-\frac{5}{37}&\frac{1}{37}\end{matrix}\right)\left(\begin{matrix}-11\\-18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{37}\left(-11\right)+\frac{7}{37}\left(-18\right)\\-\frac{5}{37}\left(-11\right)+\frac{1}{37}\left(-18\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=1
Tangohia ngā huānga poukapa x me y.
x-7y=-11,5x+2y=-18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x+5\left(-7\right)y=5\left(-11\right),5x+2y=-18
Kia ōrite ai a x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
5x-35y=-55,5x+2y=-18
Whakarūnātia.
5x-5x-35y-2y=-55+18
Me tango 5x+2y=-18 mai i 5x-35y=-55 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-35y-2y=-55+18
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-37y=-55+18
Tāpiri -35y ki te -2y.
-37y=-37
Tāpiri -55 ki te 18.
y=1
Whakawehea ngā taha e rua ki te -37.
5x+2=-18
Whakaurua te 1 mō y ki 5x+2y=-18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=-20
Me tango 2 mai i ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te 5.
x=-4,y=1
Kua oti te pūnaha te whakatau.