Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x+4y=25,-4x+3y=52
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+4y=25
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-4y+25
Me tango 4y mai i ngā taha e rua o te whārite.
-4\left(-4y+25\right)+3y=52
Whakakapia te -4y+25 mō te x ki tērā atu whārite, -4x+3y=52.
16y-100+3y=52
Whakareatia -4 ki te -4y+25.
19y-100=52
Tāpiri 16y ki te 3y.
19y=152
Me tāpiri 100 ki ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua ki te 19.
x=-4\times 8+25
Whakaurua te 8 mō y ki x=-4y+25. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-32+25
Whakareatia -4 ki te 8.
x=-7
Tāpiri 25 ki te -32.
x=-7,y=8
Kua oti te pūnaha te whakatau.
x+4y=25,-4x+3y=52
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\52\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}1&4\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\-4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-4&3\end{matrix}\right))\left(\begin{matrix}25\\52\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-4\left(-4\right)}&-\frac{4}{3-4\left(-4\right)}\\-\frac{-4}{3-4\left(-4\right)}&\frac{1}{3-4\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}25\\52\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&-\frac{4}{19}\\\frac{4}{19}&\frac{1}{19}\end{matrix}\right)\left(\begin{matrix}25\\52\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}\times 25-\frac{4}{19}\times 52\\\frac{4}{19}\times 25+\frac{1}{19}\times 52\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\8\end{matrix}\right)
Mahia ngā tātaitanga.
x=-7,y=8
Tangohia ngā huānga poukapa x me y.
x+4y=25,-4x+3y=52
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4x-4\times 4y=-4\times 25,-4x+3y=52
Kia ōrite ai a x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-4x-16y=-100,-4x+3y=52
Whakarūnātia.
-4x+4x-16y-3y=-100-52
Me tango -4x+3y=52 mai i -4x-16y=-100 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-16y-3y=-100-52
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=-100-52
Tāpiri -16y ki te -3y.
-19y=-152
Tāpiri -100 ki te -52.
y=8
Whakawehea ngā taha e rua ki te -19.
-4x+3\times 8=52
Whakaurua te 8 mō y ki -4x+3y=52. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x+24=52
Whakareatia 3 ki te 8.
-4x=28
Me tango 24 mai i ngā taha e rua o te whārite.
x=-7
Whakawehea ngā taha e rua ki te -4.
x=-7,y=8
Kua oti te pūnaha te whakatau.