Whakaoti mō d, q
d=-\frac{28}{65}\approx -0.430769231
q = \frac{2628}{65} = 40\frac{28}{65} \approx 40.430769231
Tohaina
Kua tāruatia ki te papatopenga
d+q=40,10d+0.25q=5.8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
d+q=40
Kōwhiria tētahi o ngā whārite ka whakaotia mō te d mā te wehe i te d i te taha mauī o te tohu ōrite.
d=-q+40
Me tango q mai i ngā taha e rua o te whārite.
10\left(-q+40\right)+0.25q=5.8
Whakakapia te -q+40 mō te d ki tērā atu whārite, 10d+0.25q=5.8.
-10q+400+0.25q=5.8
Whakareatia 10 ki te -q+40.
-9.75q+400=5.8
Tāpiri -10q ki te \frac{q}{4}.
-9.75q=-394.2
Me tango 400 mai i ngā taha e rua o te whārite.
q=\frac{2628}{65}
Whakawehea ngā taha e rua o te whārite ki te -9.75, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
d=-\frac{2628}{65}+40
Whakaurua te \frac{2628}{65} mō q ki d=-q+40. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō d hāngai tonu.
d=-\frac{28}{65}
Tāpiri 40 ki te -\frac{2628}{65}.
d=-\frac{28}{65},q=\frac{2628}{65}
Kua oti te pūnaha te whakatau.
d+q=40,10d+0.25q=5.8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right)\left(\begin{matrix}d\\q\end{matrix}\right)=\left(\begin{matrix}40\\5.8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right))\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right)\left(\begin{matrix}d\\q\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right))\left(\begin{matrix}40\\5.8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\10&0.25\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}d\\q\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right))\left(\begin{matrix}40\\5.8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}d\\q\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&0.25\end{matrix}\right))\left(\begin{matrix}40\\5.8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}d\\q\end{matrix}\right)=\left(\begin{matrix}\frac{0.25}{0.25-10}&-\frac{1}{0.25-10}\\-\frac{10}{0.25-10}&\frac{1}{0.25-10}\end{matrix}\right)\left(\begin{matrix}40\\5.8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}d\\q\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{39}&\frac{4}{39}\\\frac{40}{39}&-\frac{4}{39}\end{matrix}\right)\left(\begin{matrix}40\\5.8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}d\\q\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{39}\times 40+\frac{4}{39}\times 5.8\\\frac{40}{39}\times 40-\frac{4}{39}\times 5.8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}d\\q\end{matrix}\right)=\left(\begin{matrix}-\frac{28}{65}\\\frac{2628}{65}\end{matrix}\right)
Mahia ngā tātaitanga.
d=-\frac{28}{65},q=\frac{2628}{65}
Tangohia ngā huānga poukapa d me q.
d+q=40,10d+0.25q=5.8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10d+10q=10\times 40,10d+0.25q=5.8
Kia ōrite ai a d me 10d, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
10d+10q=400,10d+0.25q=5.8
Whakarūnātia.
10d-10d+10q-0.25q=400-5.8
Me tango 10d+0.25q=5.8 mai i 10d+10q=400 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10q-0.25q=400-5.8
Tāpiri 10d ki te -10d. Ka whakakore atu ngā kupu 10d me -10d, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9.75q=400-5.8
Tāpiri 10q ki te -\frac{q}{4}.
9.75q=394.2
Tāpiri 400 ki te -5.8.
q=\frac{2628}{65}
Whakawehea ngā taha e rua o te whārite ki te 9.75, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
10d+0.25\times \frac{2628}{65}=5.8
Whakaurua te \frac{2628}{65} mō q ki 10d+0.25q=5.8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō d hāngai tonu.
10d+\frac{657}{65}=5.8
Whakareatia 0.25 ki te \frac{2628}{65} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
10d=-\frac{56}{13}
Me tango \frac{657}{65} mai i ngā taha e rua o te whārite.
d=-\frac{28}{65}
Whakawehea ngā taha e rua ki te 10.
d=-\frac{28}{65},q=\frac{2628}{65}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}