Whakaoti mō a, b
a=-5
b=25
Tohaina
Kua tāruatia ki te papatopenga
a+b=20,6a+2b=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+b=20
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-b+20
Me tango b mai i ngā taha e rua o te whārite.
6\left(-b+20\right)+2b=20
Whakakapia te -b+20 mō te a ki tērā atu whārite, 6a+2b=20.
-6b+120+2b=20
Whakareatia 6 ki te -b+20.
-4b+120=20
Tāpiri -6b ki te 2b.
-4b=-100
Me tango 120 mai i ngā taha e rua o te whārite.
b=25
Whakawehea ngā taha e rua ki te -4.
a=-25+20
Whakaurua te 25 mō b ki a=-b+20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-5
Tāpiri 20 ki te -25.
a=-5,b=25
Kua oti te pūnaha te whakatau.
a+b=20,6a+2b=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\6&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}20\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}1&1\\6&2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\6&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}20\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-6}&-\frac{1}{2-6}\\-\frac{6}{2-6}&\frac{1}{2-6}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\\frac{3}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}20\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 20+\frac{1}{4}\times 20\\\frac{3}{2}\times 20-\frac{1}{4}\times 20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-5\\25\end{matrix}\right)
Mahia ngā tātaitanga.
a=-5,b=25
Tangohia ngā huānga poukapa a me b.
a+b=20,6a+2b=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6a+6b=6\times 20,6a+2b=20
Kia ōrite ai a a me 6a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
6a+6b=120,6a+2b=20
Whakarūnātia.
6a-6a+6b-2b=120-20
Me tango 6a+2b=20 mai i 6a+6b=120 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6b-2b=120-20
Tāpiri 6a ki te -6a. Ka whakakore atu ngā kupu 6a me -6a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4b=120-20
Tāpiri 6b ki te -2b.
4b=100
Tāpiri 120 ki te -20.
b=25
Whakawehea ngā taha e rua ki te 4.
6a+2\times 25=20
Whakaurua te 25 mō b ki 6a+2b=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
6a+50=20
Whakareatia 2 ki te 25.
6a=-30
Me tango 50 mai i ngā taha e rua o te whārite.
a=-5
Whakawehea ngā taha e rua ki te 6.
a=-5,b=25
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}