Whakaoti mō x, y
x=2
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x+y=21,24x-5y=23
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x+y=21
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=-y+21
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{8}\left(-y+21\right)
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{8}y+\frac{21}{8}
Whakareatia \frac{1}{8} ki te -y+21.
24\left(-\frac{1}{8}y+\frac{21}{8}\right)-5y=23
Whakakapia te \frac{-y+21}{8} mō te x ki tērā atu whārite, 24x-5y=23.
-3y+63-5y=23
Whakareatia 24 ki te \frac{-y+21}{8}.
-8y+63=23
Tāpiri -3y ki te -5y.
-8y=-40
Me tango 63 mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te -8.
x=-\frac{1}{8}\times 5+\frac{21}{8}
Whakaurua te 5 mō y ki x=-\frac{1}{8}y+\frac{21}{8}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-5+21}{8}
Whakareatia -\frac{1}{8} ki te 5.
x=2
Tāpiri \frac{21}{8} ki te -\frac{5}{8} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=5
Kua oti te pūnaha te whakatau.
8x+y=21,24x-5y=23
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&1\\24&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}21\\23\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}8&1\\24&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}21\\23\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&1\\24&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}21\\23\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&1\\24&-5\end{matrix}\right))\left(\begin{matrix}21\\23\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8\left(-5\right)-24}&-\frac{1}{8\left(-5\right)-24}\\-\frac{24}{8\left(-5\right)-24}&\frac{8}{8\left(-5\right)-24}\end{matrix}\right)\left(\begin{matrix}21\\23\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te poukapa kōaro ko \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kia tuhia anō ai te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{64}&\frac{1}{64}\\\frac{3}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}21\\23\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{64}\times 21+\frac{1}{64}\times 23\\\frac{3}{8}\times 21-\frac{1}{8}\times 23\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=5
Tangohia ngā huānga poukapa x me y.
8x+y=21,24x-5y=23
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
24\times 8x+24y=24\times 21,8\times 24x+8\left(-5\right)y=8\times 23
Kia ōrite ai a 8x me 24x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 24 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
192x+24y=504,192x-40y=184
Whakarūnātia.
192x-192x+24y+40y=504-184
Me tango 192x-40y=184 mai i 192x+24y=504 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
24y+40y=504-184
Tāpiri 192x ki te -192x. Ka whakakore atu ngā kupu 192x me -192x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
64y=504-184
Tāpiri 24y ki te 40y.
64y=320
Tāpiri 504 ki te -184.
y=5
Whakawehea ngā taha e rua ki te 64.
24x-5\times 5=23
Whakaurua te 5 mō y ki 24x-5y=23. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
24x-25=23
Whakareatia -5 ki te 5.
24x=48
Me tāpiri 25 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 24.
x=2,y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}