Whakaoti mō x, y
x = \frac{18}{5} = 3\frac{3}{5} = 3.6
y=-\frac{3}{5}=-0.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
7x+2y=24,-8x+2y=-30
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
7x+2y=24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
7x=-2y+24
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{7}\left(-2y+24\right)
Whakawehea ngā taha e rua ki te 7.
x=-\frac{2}{7}y+\frac{24}{7}
Whakareatia \frac{1}{7} ki te -2y+24.
-8\left(-\frac{2}{7}y+\frac{24}{7}\right)+2y=-30
Whakakapia te \frac{-2y+24}{7} mō te x ki tērā atu whārite, -8x+2y=-30.
\frac{16}{7}y-\frac{192}{7}+2y=-30
Whakareatia -8 ki te \frac{-2y+24}{7}.
\frac{30}{7}y-\frac{192}{7}=-30
Tāpiri \frac{16y}{7} ki te 2y.
\frac{30}{7}y=-\frac{18}{7}
Me tāpiri \frac{192}{7} ki ngā taha e rua o te whārite.
y=-\frac{3}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{30}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{7}\left(-\frac{3}{5}\right)+\frac{24}{7}
Whakaurua te -\frac{3}{5} mō y ki x=-\frac{2}{7}y+\frac{24}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{6}{35}+\frac{24}{7}
Whakareatia -\frac{2}{7} ki te -\frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{18}{5}
Tāpiri \frac{24}{7} ki te \frac{6}{35} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{18}{5},y=-\frac{3}{5}
Kua oti te pūnaha te whakatau.
7x+2y=24,-8x+2y=-30
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}7&2\\-8&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\-30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}7&2\\-8&2\end{matrix}\right))\left(\begin{matrix}7&2\\-8&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\-8&2\end{matrix}\right))\left(\begin{matrix}24\\-30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}7&2\\-8&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\-8&2\end{matrix}\right))\left(\begin{matrix}24\\-30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&2\\-8&2\end{matrix}\right))\left(\begin{matrix}24\\-30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7\times 2-2\left(-8\right)}&-\frac{2}{7\times 2-2\left(-8\right)}\\-\frac{-8}{7\times 2-2\left(-8\right)}&\frac{7}{7\times 2-2\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}24\\-30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}&-\frac{1}{15}\\\frac{4}{15}&\frac{7}{30}\end{matrix}\right)\left(\begin{matrix}24\\-30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{15}\times 24-\frac{1}{15}\left(-30\right)\\\frac{4}{15}\times 24+\frac{7}{30}\left(-30\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}\\-\frac{3}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{18}{5},y=-\frac{3}{5}
Tangohia ngā huānga poukapa x me y.
7x+2y=24,-8x+2y=-30
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7x+8x+2y-2y=24+30
Me tango -8x+2y=-30 mai i 7x+2y=24 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
7x+8x=24+30
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
15x=24+30
Tāpiri 7x ki te 8x.
15x=54
Tāpiri 24 ki te 30.
x=\frac{18}{5}
Whakawehea ngā taha e rua ki te 15.
-8\times \frac{18}{5}+2y=-30
Whakaurua te \frac{18}{5} mō x ki -8x+2y=-30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-\frac{144}{5}+2y=-30
Whakareatia -8 ki te \frac{18}{5}.
2y=-\frac{6}{5}
Me tāpiri \frac{144}{5} ki ngā taha e rua o te whārite.
y=-\frac{3}{5}
Whakawehea ngā taha e rua ki te 2.
x=\frac{18}{5},y=-\frac{3}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}