Whakaoti mō x, y
x=3
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x+5y=23,4x+y=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x+5y=23
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=-5y+23
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{6}\left(-5y+23\right)
Whakawehea ngā taha e rua ki te 6.
x=-\frac{5}{6}y+\frac{23}{6}
Whakareatia \frac{1}{6} ki te -5y+23.
4\left(-\frac{5}{6}y+\frac{23}{6}\right)+y=13
Whakakapia te \frac{-5y+23}{6} mō te x ki tērā atu whārite, 4x+y=13.
-\frac{10}{3}y+\frac{46}{3}+y=13
Whakareatia 4 ki te \frac{-5y+23}{6}.
-\frac{7}{3}y+\frac{46}{3}=13
Tāpiri -\frac{10y}{3} ki te y.
-\frac{7}{3}y=-\frac{7}{3}
Me tango \frac{46}{3} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-5+23}{6}
Whakaurua te 1 mō y ki x=-\frac{5}{6}y+\frac{23}{6}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri \frac{23}{6} ki te -\frac{5}{6} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=1
Kua oti te pūnaha te whakatau.
6x+5y=23,4x+y=13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}23\\13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&5\\4&1\end{matrix}\right))\left(\begin{matrix}6&5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\4&1\end{matrix}\right))\left(\begin{matrix}23\\13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&5\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\4&1\end{matrix}\right))\left(\begin{matrix}23\\13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&5\\4&1\end{matrix}\right))\left(\begin{matrix}23\\13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-5\times 4}&-\frac{5}{6-5\times 4}\\-\frac{4}{6-5\times 4}&\frac{6}{6-5\times 4}\end{matrix}\right)\left(\begin{matrix}23\\13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}&\frac{5}{14}\\\frac{2}{7}&-\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}23\\13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\times 23+\frac{5}{14}\times 13\\\frac{2}{7}\times 23-\frac{3}{7}\times 13\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=1
Tangohia ngā huānga poukapa x me y.
6x+5y=23,4x+y=13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 6x+4\times 5y=4\times 23,6\times 4x+6y=6\times 13
Kia ōrite ai a 6x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
24x+20y=92,24x+6y=78
Whakarūnātia.
24x-24x+20y-6y=92-78
Me tango 24x+6y=78 mai i 24x+20y=92 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
20y-6y=92-78
Tāpiri 24x ki te -24x. Ka whakakore atu ngā kupu 24x me -24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
14y=92-78
Tāpiri 20y ki te -6y.
14y=14
Tāpiri 92 ki te -78.
y=1
Whakawehea ngā taha e rua ki te 14.
4x+1=13
Whakaurua te 1 mō y ki 4x+y=13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=12
Me tango 1 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 4.
x=3,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}