Whakaoti mō y, x
x=4
y=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
5y+x=44,y-x=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5y+x=44
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
5y=-x+44
Me tango x mai i ngā taha e rua o te whārite.
y=\frac{1}{5}\left(-x+44\right)
Whakawehea ngā taha e rua ki te 5.
y=-\frac{1}{5}x+\frac{44}{5}
Whakareatia \frac{1}{5} ki te -x+44.
-\frac{1}{5}x+\frac{44}{5}-x=4
Whakakapia te \frac{-x+44}{5} mō te y ki tērā atu whārite, y-x=4.
-\frac{6}{5}x+\frac{44}{5}=4
Tāpiri -\frac{x}{5} ki te -x.
-\frac{6}{5}x=-\frac{24}{5}
Me tango \frac{44}{5} mai i ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua o te whārite ki te -\frac{6}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=-\frac{1}{5}\times 4+\frac{44}{5}
Whakaurua te 4 mō x ki y=-\frac{1}{5}x+\frac{44}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{-4+44}{5}
Whakareatia -\frac{1}{5} ki te 4.
y=8
Tāpiri \frac{44}{5} ki te -\frac{4}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=8,x=4
Kua oti te pūnaha te whakatau.
5y+x=44,y-x=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}44\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}5&1\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\1&-1\end{matrix}\right))\left(\begin{matrix}44\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-1}&-\frac{1}{5\left(-1\right)-1}\\-\frac{1}{5\left(-1\right)-1}&\frac{5}{5\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}44\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{6}&-\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}44\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 44+\frac{1}{6}\times 4\\\frac{1}{6}\times 44-\frac{5}{6}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\4\end{matrix}\right)
Mahia ngā tātaitanga.
y=8,x=4
Tangohia ngā huānga poukapa y me x.
5y+x=44,y-x=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5y+x=44,5y+5\left(-1\right)x=5\times 4
Kia ōrite ai a 5y me y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
5y+x=44,5y-5x=20
Whakarūnātia.
5y-5y+x+5x=44-20
Me tango 5y-5x=20 mai i 5y+x=44 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+5x=44-20
Tāpiri 5y ki te -5y. Ka whakakore atu ngā kupu 5y me -5y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
6x=44-20
Tāpiri x ki te 5x.
6x=24
Tāpiri 44 ki te -20.
x=4
Whakawehea ngā taha e rua ki te 6.
y-4=4
Whakaurua te 4 mō x ki y-x=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=8
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=8,x=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}