Whakaoti mō x, y
x=1
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-3y=17,-2x+5y=-22
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-3y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=3y+17
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(3y+17\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{3}{5}y+\frac{17}{5}
Whakareatia \frac{1}{5} ki te 3y+17.
-2\left(\frac{3}{5}y+\frac{17}{5}\right)+5y=-22
Whakakapia te \frac{3y+17}{5} mō te x ki tērā atu whārite, -2x+5y=-22.
-\frac{6}{5}y-\frac{34}{5}+5y=-22
Whakareatia -2 ki te \frac{3y+17}{5}.
\frac{19}{5}y-\frac{34}{5}=-22
Tāpiri -\frac{6y}{5} ki te 5y.
\frac{19}{5}y=-\frac{76}{5}
Me tāpiri \frac{34}{5} ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{5}\left(-4\right)+\frac{17}{5}
Whakaurua te -4 mō y ki x=\frac{3}{5}y+\frac{17}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-12+17}{5}
Whakareatia \frac{3}{5} ki te -4.
x=1
Tāpiri \frac{17}{5} ki te -\frac{12}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-4
Kua oti te pūnaha te whakatau.
5x-3y=17,-2x+5y=-22
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-3\\-2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-22\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-3\\-2&5\end{matrix}\right))\left(\begin{matrix}5&-3\\-2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\-2&5\end{matrix}\right))\left(\begin{matrix}17\\-22\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-3\\-2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\-2&5\end{matrix}\right))\left(\begin{matrix}17\\-22\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-3\\-2&5\end{matrix}\right))\left(\begin{matrix}17\\-22\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-3\left(-2\right)\right)}&-\frac{-3}{5\times 5-\left(-3\left(-2\right)\right)}\\-\frac{-2}{5\times 5-\left(-3\left(-2\right)\right)}&\frac{5}{5\times 5-\left(-3\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}17\\-22\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}&\frac{3}{19}\\\frac{2}{19}&\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}17\\-22\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{19}\times 17+\frac{3}{19}\left(-22\right)\\\frac{2}{19}\times 17+\frac{5}{19}\left(-22\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-4
Tangohia ngā huānga poukapa x me y.
5x-3y=17,-2x+5y=-22
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 5x-2\left(-3\right)y=-2\times 17,5\left(-2\right)x+5\times 5y=5\left(-22\right)
Kia ōrite ai a 5x me -2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-10x+6y=-34,-10x+25y=-110
Whakarūnātia.
-10x+10x+6y-25y=-34+110
Me tango -10x+25y=-110 mai i -10x+6y=-34 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-25y=-34+110
Tāpiri -10x ki te 10x. Ka whakakore atu ngā kupu -10x me 10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=-34+110
Tāpiri 6y ki te -25y.
-19y=76
Tāpiri -34 ki te 110.
y=-4
Whakawehea ngā taha e rua ki te -19.
-2x+5\left(-4\right)=-22
Whakaurua te -4 mō y ki -2x+5y=-22. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-2x-20=-22
Whakareatia 5 ki te -4.
-2x=-2
Me tāpiri 20 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -2.
x=1,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}