Whakaoti mō x, y
x=3
y=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-2y=-1,x+4y=35
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-2y=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=2y-1
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(2y-1\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{2}{5}y-\frac{1}{5}
Whakareatia \frac{1}{5} ki te 2y-1.
\frac{2}{5}y-\frac{1}{5}+4y=35
Whakakapia te \frac{2y-1}{5} mō te x ki tērā atu whārite, x+4y=35.
\frac{22}{5}y-\frac{1}{5}=35
Tāpiri \frac{2y}{5} ki te 4y.
\frac{22}{5}y=\frac{176}{5}
Me tāpiri \frac{1}{5} ki ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua o te whārite ki te \frac{22}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{5}\times 8-\frac{1}{5}
Whakaurua te 8 mō y ki x=\frac{2}{5}y-\frac{1}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{16-1}{5}
Whakareatia \frac{2}{5} ki te 8.
x=3
Tāpiri -\frac{1}{5} ki te \frac{16}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=8
Kua oti te pūnaha te whakatau.
5x-2y=-1,x+4y=35
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-2\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\35\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-2\\1&4\end{matrix}\right))\left(\begin{matrix}5&-2\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-1\\35\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-2\\1&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-1\\35\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\1&4\end{matrix}\right))\left(\begin{matrix}-1\\35\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-\left(-2\right)}&-\frac{-2}{5\times 4-\left(-2\right)}\\-\frac{1}{5\times 4-\left(-2\right)}&\frac{5}{5\times 4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-1\\35\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{1}{11}\\-\frac{1}{22}&\frac{5}{22}\end{matrix}\right)\left(\begin{matrix}-1\\35\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\left(-1\right)+\frac{1}{11}\times 35\\-\frac{1}{22}\left(-1\right)+\frac{5}{22}\times 35\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\8\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=8
Tangohia ngā huānga poukapa x me y.
5x-2y=-1,x+4y=35
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-2y=-1,5x+5\times 4y=5\times 35
Kia ōrite ai a 5x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
5x-2y=-1,5x+20y=175
Whakarūnātia.
5x-5x-2y-20y=-1-175
Me tango 5x+20y=175 mai i 5x-2y=-1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2y-20y=-1-175
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-22y=-1-175
Tāpiri -2y ki te -20y.
-22y=-176
Tāpiri -1 ki te -175.
y=8
Whakawehea ngā taha e rua ki te -22.
x+4\times 8=35
Whakaurua te 8 mō y ki x+4y=35. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+32=35
Whakareatia 4 ki te 8.
x=3
Me tango 32 mai i ngā taha e rua o te whārite.
x=3,y=8
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}