Whakaoti mō x, y
x = \frac{10}{7} = 1\frac{3}{7} \approx 1.428571429
y = \frac{33}{7} = 4\frac{5}{7} \approx 4.714285714
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-y=1,3x+y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=y+1
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(y+1\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{4}y+\frac{1}{4}
Whakareatia \frac{1}{4} ki te y+1.
3\left(\frac{1}{4}y+\frac{1}{4}\right)+y=9
Whakakapia te \frac{1+y}{4} mō te x ki tērā atu whārite, 3x+y=9.
\frac{3}{4}y+\frac{3}{4}+y=9
Whakareatia 3 ki te \frac{1+y}{4}.
\frac{7}{4}y+\frac{3}{4}=9
Tāpiri \frac{3y}{4} ki te y.
\frac{7}{4}y=\frac{33}{4}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.
y=\frac{33}{7}
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{4}\times \frac{33}{7}+\frac{1}{4}
Whakaurua te \frac{33}{7} mō y ki x=\frac{1}{4}y+\frac{1}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{33}{28}+\frac{1}{4}
Whakareatia \frac{1}{4} ki te \frac{33}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{10}{7}
Tāpiri \frac{1}{4} ki te \frac{33}{28} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{10}{7},y=\frac{33}{7}
Kua oti te pūnaha te whakatau.
4x-y=1,3x+y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-1\\3&1\end{matrix}\right))\left(\begin{matrix}4&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\right)}&-\frac{-1}{4-\left(-3\right)}\\-\frac{3}{4-\left(-3\right)}&\frac{4}{4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{3}{7}&\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}+\frac{1}{7}\times 9\\-\frac{3}{7}+\frac{4}{7}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{7}\\\frac{33}{7}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{10}{7},y=\frac{33}{7}
Tangohia ngā huānga poukapa x me y.
4x-y=1,3x+y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\left(-1\right)y=3,4\times 3x+4y=4\times 9
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x-3y=3,12x+4y=36
Whakarūnātia.
12x-12x-3y-4y=3-36
Me tango 12x+4y=36 mai i 12x-3y=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-4y=3-36
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=3-36
Tāpiri -3y ki te -4y.
-7y=-33
Tāpiri 3 ki te -36.
y=\frac{33}{7}
Whakawehea ngā taha e rua ki te -7.
3x+\frac{33}{7}=9
Whakaurua te \frac{33}{7} mō y ki 3x+y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=\frac{30}{7}
Me tango \frac{33}{7} mai i ngā taha e rua o te whārite.
x=\frac{10}{7}
Whakawehea ngā taha e rua ki te 3.
x=\frac{10}{7},y=\frac{33}{7}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}