Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x-2y+4=0,-4x+3y-3=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-2y+4=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x-2y=-4
Me tango 4 mai i ngā taha e rua o te whārite.
4x=2y-4
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(2y-4\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{2}y-1
Whakareatia \frac{1}{4} ki te -4+2y.
-4\left(\frac{1}{2}y-1\right)+3y-3=0
Whakakapia te \frac{y}{2}-1 mō te x ki tērā atu whārite, -4x+3y-3=0.
-2y+4+3y-3=0
Whakareatia -4 ki te \frac{y}{2}-1.
y+4-3=0
Tāpiri -2y ki te 3y.
y+1=0
Tāpiri 4 ki te -3.
y=-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-1\right)-1
Whakaurua te -1 mō y ki x=\frac{1}{2}y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1}{2}-1
Whakareatia \frac{1}{2} ki te -1.
x=-\frac{3}{2}
Tāpiri -1 ki te -\frac{1}{2}.
x=-\frac{3}{2},y=-1
Kua oti te pūnaha te whakatau.
4x-2y+4=0,-4x+3y-3=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-4\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-2\\-4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-4\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-4\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\left(-4\right)\right)}&-\frac{-2}{4\times 3-\left(-2\left(-4\right)\right)}\\-\frac{-4}{4\times 3-\left(-2\left(-4\right)\right)}&\frac{4}{4\times 3-\left(-2\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-4\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}-4\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\left(-4\right)+\frac{1}{2}\times 3\\-4+3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2}\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{3}{2},y=-1
Tangohia ngā huānga poukapa x me y.
4x-2y+4=0,-4x+3y-3=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 4x-4\left(-2\right)y-4\times 4=0,4\left(-4\right)x+4\times 3y+4\left(-3\right)=0
Kia ōrite ai a 4x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-16x+8y-16=0,-16x+12y-12=0
Whakarūnātia.
-16x+16x+8y-12y-16+12=0
Me tango -16x+12y-12=0 mai i -16x+8y-16=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y-12y-16+12=0
Tāpiri -16x ki te 16x. Ka whakakore atu ngā kupu -16x me 16x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y-16+12=0
Tāpiri 8y ki te -12y.
-4y-4=0
Tāpiri -16 ki te 12.
-4y=4
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -4.
-4x+3\left(-1\right)-3=0
Whakaurua te -1 mō y ki -4x+3y-3=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-4x-3-3=0
Whakareatia 3 ki te -1.
-4x-6=0
Tāpiri -3 ki te -3.
-4x=6
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=-\frac{3}{2}
Whakawehea ngā taha e rua ki te -4.
x=-\frac{3}{2},y=-1
Kua oti te pūnaha te whakatau.