Whakaoti mō x, y
x=2
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+3y=17,3x-4y+6=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+3y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-3y+17
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3y+17\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y+\frac{17}{4}
Whakareatia \frac{1}{4} ki te -3y+17.
3\left(-\frac{3}{4}y+\frac{17}{4}\right)-4y+6=0
Whakakapia te \frac{-3y+17}{4} mō te x ki tērā atu whārite, 3x-4y+6=0.
-\frac{9}{4}y+\frac{51}{4}-4y+6=0
Whakareatia 3 ki te \frac{-3y+17}{4}.
-\frac{25}{4}y+\frac{51}{4}+6=0
Tāpiri -\frac{9y}{4} ki te -4y.
-\frac{25}{4}y+\frac{75}{4}=0
Tāpiri \frac{51}{4} ki te 6.
-\frac{25}{4}y=-\frac{75}{4}
Me tango \frac{75}{4} mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te -\frac{25}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\times 3+\frac{17}{4}
Whakaurua te 3 mō y ki x=-\frac{3}{4}y+\frac{17}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-9+17}{4}
Whakareatia -\frac{3}{4} ki te 3.
x=2
Tāpiri \frac{17}{4} ki te -\frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=3
Kua oti te pūnaha te whakatau.
4x+3y=17,3x-4y+6=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-3\times 3}&-\frac{3}{4\left(-4\right)-3\times 3}\\-\frac{3}{4\left(-4\right)-3\times 3}&\frac{4}{4\left(-4\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}17\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{3}{25}\\\frac{3}{25}&-\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}17\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 17+\frac{3}{25}\left(-6\right)\\\frac{3}{25}\times 17-\frac{4}{25}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=3
Tangohia ngā huānga poukapa x me y.
4x+3y=17,3x-4y+6=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\times 3y=3\times 17,4\times 3x+4\left(-4\right)y+4\times 6=0
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x+9y=51,12x-16y+24=0
Whakarūnātia.
12x-12x+9y+16y-24=51
Me tango 12x-16y+24=0 mai i 12x+9y=51 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y+16y-24=51
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
25y-24=51
Tāpiri 9y ki te 16y.
25y=75
Me tāpiri 24 ki ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te 25.
3x-4\times 3+6=0
Whakaurua te 3 mō y ki 3x-4y+6=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-12+6=0
Whakareatia -4 ki te 3.
3x-6=0
Tāpiri -12 ki te 6.
3x=6
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 3.
x=2,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}