Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x-y=2,x+2y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y+2
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+2\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+\frac{2}{3}
Whakareatia \frac{1}{3} ki te y+2.
\frac{1}{3}y+\frac{2}{3}+2y=3
Whakakapia te \frac{2+y}{3} mō te x ki tērā atu whārite, x+2y=3.
\frac{7}{3}y+\frac{2}{3}=3
Tāpiri \frac{y}{3} ki te 2y.
\frac{7}{3}y=\frac{7}{3}
Me tango \frac{2}{3} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1+2}{3}
Whakaurua te 1 mō y ki x=\frac{1}{3}y+\frac{2}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Tāpiri \frac{2}{3} ki te \frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=1
Kua oti te pūnaha te whakatau.
3x-y=2,x+2y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\1&2\end{matrix}\right))\left(\begin{matrix}3&-1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&2\end{matrix}\right))\left(\begin{matrix}2\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-1\right)}&-\frac{-1}{3\times 2-\left(-1\right)}\\-\frac{1}{3\times 2-\left(-1\right)}&\frac{3}{3\times 2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{7}\\-\frac{1}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}2\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 2+\frac{1}{7}\times 3\\-\frac{1}{7}\times 2+\frac{3}{7}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=1
Tangohia ngā huānga poukapa x me y.
3x-y=2,x+2y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-y=2,3x+3\times 2y=3\times 3
Kia ōrite ai a 3x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
3x-y=2,3x+6y=9
Whakarūnātia.
3x-3x-y-6y=2-9
Me tango 3x+6y=9 mai i 3x-y=2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y-6y=2-9
Tāpiri 3x ki te -3x. Ka whakakore atu ngā kupu 3x me -3x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=2-9
Tāpiri -y ki te -6y.
-7y=-7
Tāpiri 2 ki te -9.
y=1
Whakawehea ngā taha e rua ki te -7.
x+2=3
Whakaurua te 1 mō y ki x+2y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Me tango 2 mai i ngā taha e rua o te whārite.
x=1,y=1
Kua oti te pūnaha te whakatau.