Whakaoti mō x, y
x=6
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+y=10,x+y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-y+10
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-y+10\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{2}y+5
Whakareatia \frac{1}{2} ki te -y+10.
-\frac{1}{2}y+5+y=4
Whakakapia te -\frac{y}{2}+5 mō te x ki tērā atu whārite, x+y=4.
\frac{1}{2}y+5=4
Tāpiri -\frac{y}{2} ki te y.
\frac{1}{2}y=-1
Me tango 5 mai i ngā taha e rua o te whārite.
y=-2
Me whakarea ngā taha e rua ki te 2.
x=-\frac{1}{2}\left(-2\right)+5
Whakaurua te -2 mō y ki x=-\frac{1}{2}y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1+5
Whakareatia -\frac{1}{2} ki te -2.
x=6
Tāpiri 5 ki te 1.
x=6,y=-2
Kua oti te pūnaha te whakatau.
2x+y=10,x+y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}10\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}10\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}10\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{2}{2-1}\end{matrix}\right)\left(\begin{matrix}10\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}10\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10-4\\-10+2\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=-2
Tangohia ngā huānga poukapa x me y.
2x+y=10,x+y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-x+y-y=10-4
Me tango x+y=4 mai i 2x+y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-x=10-4
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=10-4
Tāpiri 2x ki te -x.
x=6
Tāpiri 10 ki te -4.
6+y=4
Whakaurua te 6 mō x ki x+y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-2
Me tango 6 mai i ngā taha e rua o te whārite.
x=6,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}