Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\times 2\sqrt{5}-\sqrt{5}+3\sqrt{\frac{1}{5}}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
4\sqrt{5}-\sqrt{5}+3\sqrt{\frac{1}{5}}
Whakareatia te 2 ki te 2, ka 4.
3\sqrt{5}+3\sqrt{\frac{1}{5}}
Pahekotia te 4\sqrt{5} me -\sqrt{5}, ka 3\sqrt{5}.
3\sqrt{5}+3\times \frac{\sqrt{1}}{\sqrt{5}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{1}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{1}}{\sqrt{5}}.
3\sqrt{5}+3\times \frac{1}{\sqrt{5}}
Tātaitia te pūtakerua o 1 kia tae ki 1.
3\sqrt{5}+3\times \frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
3\sqrt{5}+3\times \frac{\sqrt{5}}{5}
Ko te pūrua o \sqrt{5} ko 5.
3\sqrt{5}+\frac{3\sqrt{5}}{5}
Tuhia te 3\times \frac{\sqrt{5}}{5} hei hautanga kotahi.
\frac{18}{5}\sqrt{5}
Pahekotia te 3\sqrt{5} me \frac{3\sqrt{5}}{5}, ka \frac{18}{5}\sqrt{5}.