Whakaoti mō x, y
x=-2
y=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x-10y=-10,-10x+8y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
10x-10y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
10x=10y-10
Me tāpiri 10y ki ngā taha e rua o te whārite.
x=\frac{1}{10}\left(10y-10\right)
Whakawehea ngā taha e rua ki te 10.
x=y-1
Whakareatia \frac{1}{10} ki te -10+10y.
-10\left(y-1\right)+8y=12
Whakakapia te y-1 mō te x ki tērā atu whārite, -10x+8y=12.
-10y+10+8y=12
Whakareatia -10 ki te y-1.
-2y+10=12
Tāpiri -10y ki te 8y.
-2y=2
Me tango 10 mai i ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua ki te -2.
x=-1-1
Whakaurua te -1 mō y ki x=y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2
Tāpiri -1 ki te -1.
x=-2,y=-1
Kua oti te pūnaha te whakatau.
10x-10y=-10,-10x+8y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}10&-10\\-10&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{10\times 8-\left(-10\left(-10\right)\right)}&-\frac{-10}{10\times 8-\left(-10\left(-10\right)\right)}\\-\frac{-10}{10\times 8-\left(-10\left(-10\right)\right)}&\frac{10}{10\times 8-\left(-10\left(-10\right)\right)}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&-\frac{1}{2}\\-\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-10\right)-\frac{1}{2}\times 12\\-\frac{1}{2}\left(-10\right)-\frac{1}{2}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=-1
Tangohia ngā huānga poukapa x me y.
10x-10y=-10,-10x+8y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-10\times 10x-10\left(-10\right)y=-10\left(-10\right),10\left(-10\right)x+10\times 8y=10\times 12
Kia ōrite ai a 10x me -10x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 10.
-100x+100y=100,-100x+80y=120
Whakarūnātia.
-100x+100x+100y-80y=100-120
Me tango -100x+80y=120 mai i -100x+100y=100 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
100y-80y=100-120
Tāpiri -100x ki te 100x. Ka whakakore atu ngā kupu -100x me 100x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
20y=100-120
Tāpiri 100y ki te -80y.
20y=-20
Tāpiri 100 ki te -120.
y=-1
Whakawehea ngā taha e rua ki te 20.
-10x+8\left(-1\right)=12
Whakaurua te -1 mō y ki -10x+8y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-10x-8=12
Whakareatia 8 ki te -1.
-10x=20
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te -10.
x=-2,y=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}