Whakaoti mō x, y
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
y = \frac{16}{9} = 1\frac{7}{9} \approx 1.777777778
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x+3y=4,-7x+12y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x+3y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=-3y+4
Me tango 3y mai i ngā taha e rua o te whārite.
x=-\left(-3y+4\right)
Whakawehea ngā taha e rua ki te -1.
x=3y-4
Whakareatia -1 ki te -3y+4.
-7\left(3y-4\right)+12y=12
Whakakapia te 3y-4 mō te x ki tērā atu whārite, -7x+12y=12.
-21y+28+12y=12
Whakareatia -7 ki te 3y-4.
-9y+28=12
Tāpiri -21y ki te 12y.
-9y=-16
Me tango 28 mai i ngā taha e rua o te whārite.
y=\frac{16}{9}
Whakawehea ngā taha e rua ki te -9.
x=3\times \frac{16}{9}-4
Whakaurua te \frac{16}{9} mō y ki x=3y-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{16}{3}-4
Whakareatia 3 ki te \frac{16}{9}.
x=\frac{4}{3}
Tāpiri -4 ki te \frac{16}{3}.
x=\frac{4}{3},y=\frac{16}{9}
Kua oti te pūnaha te whakatau.
-x+3y=4,-7x+12y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&3\\-7&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&3\\-7&12\end{matrix}\right))\left(\begin{matrix}-1&3\\-7&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\-7&12\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&3\\-7&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\-7&12\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&3\\-7&12\end{matrix}\right))\left(\begin{matrix}4\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{-12-3\left(-7\right)}&-\frac{3}{-12-3\left(-7\right)}\\-\frac{-7}{-12-3\left(-7\right)}&-\frac{1}{-12-3\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}4\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\\frac{7}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}4\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\times 4-\frac{1}{3}\times 12\\\frac{7}{9}\times 4-\frac{1}{9}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\\\frac{16}{9}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{4}{3},y=\frac{16}{9}
Tangohia ngā huānga poukapa x me y.
-x+3y=4,-7x+12y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-7\left(-1\right)x-7\times 3y=-7\times 4,-\left(-7\right)x-12y=-12
Kia ōrite ai a -x me -7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
7x-21y=-28,7x-12y=-12
Whakarūnātia.
7x-7x-21y+12y=-28+12
Me tango 7x-12y=-12 mai i 7x-21y=-28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-21y+12y=-28+12
Tāpiri 7x ki te -7x. Ka whakakore atu ngā kupu 7x me -7x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-9y=-28+12
Tāpiri -21y ki te 12y.
-9y=-16
Tāpiri -28 ki te 12.
y=\frac{16}{9}
Whakawehea ngā taha e rua ki te -9.
-7x+12\times \frac{16}{9}=12
Whakaurua te \frac{16}{9} mō y ki -7x+12y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-7x+\frac{64}{3}=12
Whakareatia 12 ki te \frac{16}{9}.
-7x=-\frac{28}{3}
Me tango \frac{64}{3} mai i ngā taha e rua o te whārite.
x=\frac{4}{3}
Whakawehea ngā taha e rua ki te -7.
x=\frac{4}{3},y=\frac{16}{9}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}