Whakaoti mō v, d
v=4
d=-3
Tohaina
Kua tāruatia ki te papatopenga
-v+2d=-10,3v+d=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-v+2d=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te v mā te wehe i te v i te taha mauī o te tohu ōrite.
-v=-2d-10
Me tango 2d mai i ngā taha e rua o te whārite.
v=-\left(-2d-10\right)
Whakawehea ngā taha e rua ki te -1.
v=2d+10
Whakareatia -1 ki te -2d-10.
3\left(2d+10\right)+d=9
Whakakapia te 10+2d mō te v ki tērā atu whārite, 3v+d=9.
6d+30+d=9
Whakareatia 3 ki te 10+2d.
7d+30=9
Tāpiri 6d ki te d.
7d=-21
Me tango 30 mai i ngā taha e rua o te whārite.
d=-3
Whakawehea ngā taha e rua ki te 7.
v=2\left(-3\right)+10
Whakaurua te -3 mō d ki v=2d+10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō v hāngai tonu.
v=-6+10
Whakareatia 2 ki te -3.
v=4
Tāpiri 10 ki te -6.
v=4,d=-3
Kua oti te pūnaha te whakatau.
-v+2d=-10,3v+d=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&2\\3&1\end{matrix}\right)\left(\begin{matrix}v\\d\end{matrix}\right)=\left(\begin{matrix}-10\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&2\\3&1\end{matrix}\right))\left(\begin{matrix}-1&2\\3&1\end{matrix}\right)\left(\begin{matrix}v\\d\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\3&1\end{matrix}\right))\left(\begin{matrix}-10\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&2\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}v\\d\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\3&1\end{matrix}\right))\left(\begin{matrix}-10\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}v\\d\end{matrix}\right)=inverse(\left(\begin{matrix}-1&2\\3&1\end{matrix}\right))\left(\begin{matrix}-10\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}v\\d\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-1-2\times 3}&-\frac{2}{-1-2\times 3}\\-\frac{3}{-1-2\times 3}&-\frac{1}{-1-2\times 3}\end{matrix}\right)\left(\begin{matrix}-10\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}v\\d\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{2}{7}\\\frac{3}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-10\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}v\\d\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\left(-10\right)+\frac{2}{7}\times 9\\\frac{3}{7}\left(-10\right)+\frac{1}{7}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}v\\d\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
v=4,d=-3
Tangohia ngā huānga poukapa v me d.
-v+2d=-10,3v+d=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\left(-1\right)v+3\times 2d=3\left(-10\right),-3v-d=-9
Kia ōrite ai a -v me 3v, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-3v+6d=-30,-3v-d=-9
Whakarūnātia.
-3v+3v+6d+d=-30+9
Me tango -3v-d=-9 mai i -3v+6d=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6d+d=-30+9
Tāpiri -3v ki te 3v. Ka whakakore atu ngā kupu -3v me 3v, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
7d=-30+9
Tāpiri 6d ki te d.
7d=-21
Tāpiri -30 ki te 9.
d=-3
Whakawehea ngā taha e rua ki te 7.
3v-3=9
Whakaurua te -3 mō d ki 3v+d=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō v hāngai tonu.
3v=12
Me tāpiri 3 ki ngā taha e rua o te whārite.
v=4
Whakawehea ngā taha e rua ki te 3.
v=4,d=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}