Whakaoti mō x, y
x=5
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-7x+2y=-39,9x-5y=55
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-7x+2y=-39
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-7x=-2y-39
Me tango 2y mai i ngā taha e rua o te whārite.
x=-\frac{1}{7}\left(-2y-39\right)
Whakawehea ngā taha e rua ki te -7.
x=\frac{2}{7}y+\frac{39}{7}
Whakareatia -\frac{1}{7} ki te -2y-39.
9\left(\frac{2}{7}y+\frac{39}{7}\right)-5y=55
Whakakapia te \frac{2y+39}{7} mō te x ki tērā atu whārite, 9x-5y=55.
\frac{18}{7}y+\frac{351}{7}-5y=55
Whakareatia 9 ki te \frac{2y+39}{7}.
-\frac{17}{7}y+\frac{351}{7}=55
Tāpiri \frac{18y}{7} ki te -5y.
-\frac{17}{7}y=\frac{34}{7}
Me tango \frac{351}{7} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te -\frac{17}{7}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{2}{7}\left(-2\right)+\frac{39}{7}
Whakaurua te -2 mō y ki x=\frac{2}{7}y+\frac{39}{7}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-4+39}{7}
Whakareatia \frac{2}{7} ki te -2.
x=5
Tāpiri \frac{39}{7} ki te -\frac{4}{7} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=5,y=-2
Kua oti te pūnaha te whakatau.
-7x+2y=-39,9x-5y=55
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-39\\55\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right))\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right))\left(\begin{matrix}-39\\55\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-7&2\\9&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right))\left(\begin{matrix}-39\\55\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&2\\9&-5\end{matrix}\right))\left(\begin{matrix}-39\\55\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{-7\left(-5\right)-2\times 9}&-\frac{2}{-7\left(-5\right)-2\times 9}\\-\frac{9}{-7\left(-5\right)-2\times 9}&-\frac{7}{-7\left(-5\right)-2\times 9}\end{matrix}\right)\left(\begin{matrix}-39\\55\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{17}&-\frac{2}{17}\\-\frac{9}{17}&-\frac{7}{17}\end{matrix}\right)\left(\begin{matrix}-39\\55\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{17}\left(-39\right)-\frac{2}{17}\times 55\\-\frac{9}{17}\left(-39\right)-\frac{7}{17}\times 55\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=-2
Tangohia ngā huānga poukapa x me y.
-7x+2y=-39,9x-5y=55
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9\left(-7\right)x+9\times 2y=9\left(-39\right),-7\times 9x-7\left(-5\right)y=-7\times 55
Kia ōrite ai a -7x me 9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -7.
-63x+18y=-351,-63x+35y=-385
Whakarūnātia.
-63x+63x+18y-35y=-351+385
Me tango -63x+35y=-385 mai i -63x+18y=-351 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18y-35y=-351+385
Tāpiri -63x ki te 63x. Ka whakakore atu ngā kupu -63x me 63x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-17y=-351+385
Tāpiri 18y ki te -35y.
-17y=34
Tāpiri -351 ki te 385.
y=-2
Whakawehea ngā taha e rua ki te -17.
9x-5\left(-2\right)=55
Whakaurua te -2 mō y ki 9x-5y=55. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
9x+10=55
Whakareatia -5 ki te -2.
9x=45
Me tango 10 mai i ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 9.
x=5,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}