Whakaoti mō x, y
x=14
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
-2x+9y=8,x-2y=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2x+9y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-2x=-9y+8
Me tango 9y mai i ngā taha e rua o te whārite.
x=-\frac{1}{2}\left(-9y+8\right)
Whakawehea ngā taha e rua ki te -2.
x=\frac{9}{2}y-4
Whakareatia -\frac{1}{2} ki te -9y+8.
\frac{9}{2}y-4-2y=6
Whakakapia te \frac{9y}{2}-4 mō te x ki tērā atu whārite, x-2y=6.
\frac{5}{2}y-4=6
Tāpiri \frac{9y}{2} ki te -2y.
\frac{5}{2}y=10
Me tāpiri 4 ki ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{9}{2}\times 4-4
Whakaurua te 4 mō y ki x=\frac{9}{2}y-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=18-4
Whakareatia \frac{9}{2} ki te 4.
x=14
Tāpiri -4 ki te 18.
x=14,y=4
Kua oti te pūnaha te whakatau.
-2x+9y=8,x-2y=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&9\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&9\\1&-2\end{matrix}\right))\left(\begin{matrix}8\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2\left(-2\right)-9}&-\frac{9}{-2\left(-2\right)-9}\\-\frac{1}{-2\left(-2\right)-9}&-\frac{2}{-2\left(-2\right)-9}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{9}{5}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}8\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 8+\frac{9}{5}\times 6\\\frac{1}{5}\times 8+\frac{2}{5}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=14,y=4
Tangohia ngā huānga poukapa x me y.
-2x+9y=8,x-2y=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2x+9y=8,-2x-2\left(-2\right)y=-2\times 6
Kia ōrite ai a -2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-2x+9y=8,-2x+4y=-12
Whakarūnātia.
-2x+2x+9y-4y=8+12
Me tango -2x+4y=-12 mai i -2x+9y=8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y-4y=8+12
Tāpiri -2x ki te 2x. Ka whakakore atu ngā kupu -2x me 2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
5y=8+12
Tāpiri 9y ki te -4y.
5y=20
Tāpiri 8 ki te 12.
y=4
Whakawehea ngā taha e rua ki te 5.
x-2\times 4=6
Whakaurua te 4 mō y ki x-2y=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-8=6
Whakareatia -2 ki te 4.
x=14
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=14,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}