Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-2a+3b=0,2a+5b=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-2a+3b=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
-2a=-3b
Me tango 3b mai i ngā taha e rua o te whārite.
a=-\frac{1}{2}\left(-3\right)b
Whakawehea ngā taha e rua ki te -2.
a=\frac{3}{2}b
Whakareatia -\frac{1}{2} ki te -3b.
2\times \frac{3}{2}b+5b=16
Whakakapia te \frac{3b}{2} mō te a ki tērā atu whārite, 2a+5b=16.
3b+5b=16
Whakareatia 2 ki te \frac{3b}{2}.
8b=16
Tāpiri 3b ki te 5b.
b=2
Whakawehea ngā taha e rua ki te 8.
a=\frac{3}{2}\times 2
Whakaurua te 2 mō b ki a=\frac{3}{2}b. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=3
Whakareatia \frac{3}{2} ki te 2.
a=3,b=2
Kua oti te pūnaha te whakatau.
-2a+3b=0,2a+5b=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-2&3\\2&5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-2&3\\2&5\end{matrix}\right))\left(\begin{matrix}-2&3\\2&5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\2&5\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-2&3\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\2&5\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}-2&3\\2&5\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-2\times 5-3\times 2}&-\frac{3}{-2\times 5-3\times 2}\\-\frac{2}{-2\times 5-3\times 2}&-\frac{2}{-2\times 5-3\times 2}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{16}&\frac{3}{16}\\\frac{1}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{16}\times 16\\\frac{1}{8}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Mahia ngā tātaitanga.
a=3,b=2
Tangohia ngā huānga poukapa a me b.
-2a+3b=0,2a+5b=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\left(-2\right)a+2\times 3b=0,-2\times 2a-2\times 5b=-2\times 16
Kia ōrite ai a -2a me 2a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -2.
-4a+6b=0,-4a-10b=-32
Whakarūnātia.
-4a+4a+6b+10b=32
Me tango -4a-10b=-32 mai i -4a+6b=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6b+10b=32
Tāpiri -4a ki te 4a. Ka whakakore atu ngā kupu -4a me 4a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
16b=32
Tāpiri 6b ki te 10b.
b=2
Whakawehea ngā taha e rua ki te 16.
2a+5\times 2=16
Whakaurua te 2 mō b ki 2a+5b=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
2a+10=16
Whakareatia 5 ki te 2.
2a=6
Me tango 10 mai i ngā taha e rua o te whārite.
a=3
Whakawehea ngā taha e rua ki te 2.
a=3,b=2
Kua oti te pūnaha te whakatau.