Aromātai
\frac{1163}{2187}\approx 0.531778692
Tauwehe
\frac{1163}{3 ^ {7}} = 0.5317786922725194
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{1}{3}\right)^{8}+8\times \frac{2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakareatia te 4! ki te 4!, ka \left(4!\right)^{2}.
\frac{1}{6561}+8\times \frac{2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tātaihia te \frac{1}{3} mā te pū o 8, kia riro ko \frac{1}{6561}.
\frac{1}{6561}+\frac{8\times 2}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tuhia te 8\times \frac{2}{3} hei hautanga kotahi.
\frac{1}{6561}+\frac{16}{3}\times \left(\frac{1}{3}\right)^{7}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakareatia te 8 ki te 2, ka 16.
\frac{1}{6561}+\frac{16}{3}\times \frac{1}{2187}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tātaihia te \frac{1}{3} mā te pū o 7, kia riro ko \frac{1}{2187}.
\frac{1}{6561}+\frac{16\times 1}{3\times 2187}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Me whakarea te \frac{16}{3} ki te \frac{1}{2187} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{6561}+\frac{16}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Mahia ngā whakarea i roto i te hautanga \frac{16\times 1}{3\times 2187}.
\frac{1+16}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tā te mea he rite te tauraro o \frac{1}{6561} me \frac{16}{6561}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{17}{6561}+\frac{8!}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tāpirihia te 1 ki te 16, ka 17.
\frac{17}{6561}+\frac{40320}{6!\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 8 ko 40320.
\frac{17}{6561}+\frac{40320}{720\times 2!}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 6 ko 720.
\frac{17}{6561}+\frac{40320}{720\times 2}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 2 ko 2.
\frac{17}{6561}+\frac{40320}{1440}\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakareatia te 720 ki te 2, ka 1440.
\frac{17}{6561}+28\times \left(\frac{2}{3}\right)^{2}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakawehea te 40320 ki te 1440, kia riro ko 28.
\frac{17}{6561}+28\times \frac{4}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tātaihia te \frac{2}{3} mā te pū o 2, kia riro ko \frac{4}{9}.
\frac{17}{6561}+\frac{28\times 4}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tuhia te 28\times \frac{4}{9} hei hautanga kotahi.
\frac{17}{6561}+\frac{112}{9}\times \left(\frac{1}{3}\right)^{6}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakareatia te 28 ki te 4, ka 112.
\frac{17}{6561}+\frac{112}{9}\times \frac{1}{729}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tātaihia te \frac{1}{3} mā te pū o 6, kia riro ko \frac{1}{729}.
\frac{17}{6561}+\frac{112\times 1}{9\times 729}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Me whakarea te \frac{112}{9} ki te \frac{1}{729} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{17}{6561}+\frac{112}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Mahia ngā whakarea i roto i te hautanga \frac{112\times 1}{9\times 729}.
\frac{17+112}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tā te mea he rite te tauraro o \frac{17}{6561} me \frac{112}{6561}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{129}{6561}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tāpirihia te 17 ki te 112, ka 129.
\frac{43}{2187}+\frac{8!}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakahekea te hautanga \frac{129}{6561} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{43}{2187}+\frac{40320}{5!\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 8 ko 40320.
\frac{43}{2187}+\frac{40320}{120\times 3!}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 5 ko 120.
\frac{43}{2187}+\frac{40320}{120\times 6}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 3 ko 6.
\frac{43}{2187}+\frac{40320}{720}\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakareatia te 120 ki te 6, ka 720.
\frac{43}{2187}+56\times \left(\frac{2}{3}\right)^{3}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakawehea te 40320 ki te 720, kia riro ko 56.
\frac{43}{2187}+56\times \frac{8}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tātaihia te \frac{2}{3} mā te pū o 3, kia riro ko \frac{8}{27}.
\frac{43}{2187}+\frac{56\times 8}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tuhia te 56\times \frac{8}{27} hei hautanga kotahi.
\frac{43}{2187}+\frac{448}{27}\times \left(\frac{1}{3}\right)^{5}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakareatia te 56 ki te 8, ka 448.
\frac{43}{2187}+\frac{448}{27}\times \frac{1}{243}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tātaihia te \frac{1}{3} mā te pū o 5, kia riro ko \frac{1}{243}.
\frac{43}{2187}+\frac{448\times 1}{27\times 243}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Me whakarea te \frac{448}{27} ki te \frac{1}{243} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{43}{2187}+\frac{448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Mahia ngā whakarea i roto i te hautanga \frac{448\times 1}{27\times 243}.
\frac{129}{6561}+\frac{448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te maha noa iti rawa atu o 2187 me 6561 ko 6561. Me tahuri \frac{43}{2187} me \frac{448}{6561} ki te hautau me te tautūnga 6561.
\frac{129+448}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tā te mea he rite te tauraro o \frac{129}{6561} me \frac{448}{6561}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{577}{6561}+\frac{8!}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tāpirihia te 129 ki te 448, ka 577.
\frac{577}{6561}+\frac{40320}{\left(4!\right)^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 8 ko 40320.
\frac{577}{6561}+\frac{40320}{24^{2}}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 4 ko 24.
\frac{577}{6561}+\frac{40320}{576}\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tātaihia te 24 mā te pū o 2, kia riro ko 576.
\frac{577}{6561}+70\times \left(\frac{2}{3}\right)^{4}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakawehea te 40320 ki te 576, kia riro ko 70.
\frac{577}{6561}+70\times \frac{16}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tātaihia te \frac{2}{3} mā te pū o 4, kia riro ko \frac{16}{81}.
\frac{577}{6561}+\frac{70\times 16}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tuhia te 70\times \frac{16}{81} hei hautanga kotahi.
\frac{577}{6561}+\frac{1120}{81}\times \left(\frac{1}{3}\right)^{4}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakareatia te 70 ki te 16, ka 1120.
\frac{577}{6561}+\frac{1120}{81}\times \frac{1}{81}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tātaihia te \frac{1}{3} mā te pū o 4, kia riro ko \frac{1}{81}.
\frac{577}{6561}+\frac{1120\times 1}{81\times 81}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Me whakarea te \frac{1120}{81} ki te \frac{1}{81} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{577}{6561}+\frac{1120}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Mahia ngā whakarea i roto i te hautanga \frac{1120\times 1}{81\times 81}.
\frac{577+1120}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tā te mea he rite te tauraro o \frac{577}{6561} me \frac{1120}{6561}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1697}{6561}+\frac{8!}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Tāpirihia te 577 ki te 1120, ka 1697.
\frac{1697}{6561}+\frac{40320}{3!\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 8 ko 40320.
\frac{1697}{6561}+\frac{40320}{6\times 5!}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 3 ko 6.
\frac{1697}{6561}+\frac{40320}{6\times 120}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Ko te huarea o 5 ko 120.
\frac{1697}{6561}+\frac{40320}{720}\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakareatia te 6 ki te 120, ka 720.
\frac{1697}{6561}+56\times \left(\frac{2}{3}\right)^{5}\times \left(\frac{1}{3}\right)^{3}
Whakawehea te 40320 ki te 720, kia riro ko 56.
\frac{1697}{6561}+56\times \frac{32}{243}\times \left(\frac{1}{3}\right)^{3}
Tātaihia te \frac{2}{3} mā te pū o 5, kia riro ko \frac{32}{243}.
\frac{1697}{6561}+\frac{56\times 32}{243}\times \left(\frac{1}{3}\right)^{3}
Tuhia te 56\times \frac{32}{243} hei hautanga kotahi.
\frac{1697}{6561}+\frac{1792}{243}\times \left(\frac{1}{3}\right)^{3}
Whakareatia te 56 ki te 32, ka 1792.
\frac{1697}{6561}+\frac{1792}{243}\times \frac{1}{27}
Tātaihia te \frac{1}{3} mā te pū o 3, kia riro ko \frac{1}{27}.
\frac{1697}{6561}+\frac{1792\times 1}{243\times 27}
Me whakarea te \frac{1792}{243} ki te \frac{1}{27} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1697}{6561}+\frac{1792}{6561}
Mahia ngā whakarea i roto i te hautanga \frac{1792\times 1}{243\times 27}.
\frac{1697+1792}{6561}
Tā te mea he rite te tauraro o \frac{1697}{6561} me \frac{1792}{6561}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3489}{6561}
Tāpirihia te 1697 ki te 1792, ka 3489.
\frac{1163}{2187}
Whakahekea te hautanga \frac{3489}{6561} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}