Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8,\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}\left(y-1\right)=8
Whakareatia \frac{1}{2} ki te x+1.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}y-\frac{1}{3}=8
Whakareatia \frac{1}{3} ki te y-1.
\frac{1}{2}x+\frac{1}{3}y+\frac{1}{6}=8
Tāpiri \frac{1}{2} ki te -\frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{1}{2}x+\frac{1}{3}y=\frac{47}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
\frac{1}{2}x=-\frac{1}{3}y+\frac{47}{6}
Me tango \frac{y}{3} mai i ngā taha e rua o te whārite.
x=2\left(-\frac{1}{3}y+\frac{47}{6}\right)
Me whakarea ngā taha e rua ki te 2.
x=-\frac{2}{3}y+\frac{47}{3}
Whakareatia 2 ki te -\frac{y}{3}+\frac{47}{6}.
\frac{1}{3}\left(-\frac{2}{3}y+\frac{47}{3}-1\right)+\frac{1}{2}\left(y+1\right)=9
Whakakapia te \frac{-2y+47}{3} mō te x ki tērā atu whārite, \frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9.
\frac{1}{3}\left(-\frac{2}{3}y+\frac{44}{3}\right)+\frac{1}{2}\left(y+1\right)=9
Tāpiri \frac{47}{3} ki te -1.
-\frac{2}{9}y+\frac{44}{9}+\frac{1}{2}\left(y+1\right)=9
Whakareatia \frac{1}{3} ki te \frac{-2y+44}{3}.
-\frac{2}{9}y+\frac{44}{9}+\frac{1}{2}y+\frac{1}{2}=9
Whakareatia \frac{1}{2} ki te y+1.
\frac{5}{18}y+\frac{44}{9}+\frac{1}{2}=9
Tāpiri -\frac{2y}{9} ki te \frac{y}{2}.
\frac{5}{18}y+\frac{97}{18}=9
Tāpiri \frac{44}{9} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{5}{18}y=\frac{65}{18}
Me tango \frac{97}{18} mai i ngā taha e rua o te whārite.
y=13
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{18}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{3}\times 13+\frac{47}{3}
Whakaurua te 13 mō y ki x=-\frac{2}{3}y+\frac{47}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-26+47}{3}
Whakareatia -\frac{2}{3} ki te 13.
x=7
Tāpiri \frac{47}{3} ki te -\frac{26}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=7,y=13
Kua oti te pūnaha te whakatau.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8,\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\frac{1}{2}\left(x+1\right)+\frac{1}{3}\left(y-1\right)=8
Whakarūnātia te whārite tuatahi ki te āhua tānga ngahuru.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}\left(y-1\right)=8
Whakareatia \frac{1}{2} ki te x+1.
\frac{1}{2}x+\frac{1}{2}+\frac{1}{3}y-\frac{1}{3}=8
Whakareatia \frac{1}{3} ki te y-1.
\frac{1}{2}x+\frac{1}{3}y+\frac{1}{6}=8
Tāpiri \frac{1}{2} ki te -\frac{1}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{1}{2}x+\frac{1}{3}y=\frac{47}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
\frac{1}{3}\left(x-1\right)+\frac{1}{2}\left(y+1\right)=9
Whakarūnātia te whārite tuarua ki te āhua tānga ngahuru.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}\left(y+1\right)=9
Whakareatia \frac{1}{3} ki te x-1.
\frac{1}{3}x-\frac{1}{3}+\frac{1}{2}y+\frac{1}{2}=9
Whakareatia \frac{1}{2} ki te y+1.
\frac{1}{3}x+\frac{1}{2}y+\frac{1}{6}=9
Tāpiri -\frac{1}{3} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\frac{1}{3}x+\frac{1}{2}y=\frac{53}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&\frac{1}{3}\\\frac{1}{3}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}&-\frac{\frac{1}{3}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}\\-\frac{\frac{1}{3}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}&\frac{\frac{1}{2}}{\frac{1}{2}\times \frac{1}{2}-\frac{1}{3}\times \frac{1}{3}}\end{matrix}\right)\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}&-\frac{12}{5}\\-\frac{12}{5}&\frac{18}{5}\end{matrix}\right)\left(\begin{matrix}\frac{47}{6}\\\frac{53}{6}\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{5}\times \frac{47}{6}-\frac{12}{5}\times \frac{53}{6}\\-\frac{12}{5}\times \frac{47}{6}+\frac{18}{5}\times \frac{53}{6}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\13\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=13
Tangohia ngā huānga poukapa x me y.