Whakaoti mō y, x
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
y=\frac{7}{12}\approx 0.583333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
1+4y=\frac{10}{3}
Whakaarohia te whārite tuatahi. Whakawehea te 3 ki te 3, kia riro ko 1.
4y=\frac{10}{3}-1
Tangohia te 1 mai i ngā taha e rua.
4y=\frac{7}{3}
Tangohia te 1 i te \frac{10}{3}, ka \frac{7}{3}.
y=\frac{\frac{7}{3}}{4}
Whakawehea ngā taha e rua ki te 4.
y=\frac{7}{3\times 4}
Tuhia te \frac{\frac{7}{3}}{4} hei hautanga kotahi.
y=\frac{7}{12}
Whakareatia te 3 ki te 4, ka 12.
\frac{2\left(-2\times \frac{7}{12}+x\right)}{3}-\frac{3x}{2}=-\frac{13}{6}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
2\times 2\left(-2\times \frac{7}{12}+x\right)-3\times 3x=-13
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 3,2,6.
4\left(-2\times \frac{7}{12}+x\right)-3\times 3x=-13
Whakareatia te 2 ki te 2, ka 4.
4\left(-\frac{7}{6}+x\right)-3\times 3x=-13
Whakareatia te -2 ki te \frac{7}{12}, ka -\frac{7}{6}.
-\frac{14}{3}+4x-3\times 3x=-13
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te -\frac{7}{6}+x.
-\frac{14}{3}+4x-9x=-13
Whakareatia te -3 ki te 3, ka -9.
-\frac{14}{3}-5x=-13
Pahekotia te 4x me -9x, ka -5x.
-5x=-13+\frac{14}{3}
Me tāpiri te \frac{14}{3} ki ngā taha e rua.
-5x=-\frac{25}{3}
Tāpirihia te -13 ki te \frac{14}{3}, ka -\frac{25}{3}.
x=\frac{-\frac{25}{3}}{-5}
Whakawehea ngā taha e rua ki te -5.
x=\frac{-25}{3\left(-5\right)}
Tuhia te \frac{-\frac{25}{3}}{-5} hei hautanga kotahi.
x=\frac{-25}{-15}
Whakareatia te 3 ki te -5, ka -15.
x=\frac{5}{3}
Whakahekea te hautanga \frac{-25}{-15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -5.
y=\frac{7}{12} x=\frac{5}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}