Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(x+1\right)-3y=-9
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
2x+2-3y=-9
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+1.
2x-3y=-9-2
Tangohia te 2 mai i ngā taha e rua.
2x-3y=-11
Tangohia te 2 i te -9, ka -11.
3x+15-3y+3x=12
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+5-y.
6x+15-3y=12
Pahekotia te 3x me 3x, ka 6x.
6x-3y=12-15
Tangohia te 15 mai i ngā taha e rua.
6x-3y=-3
Tangohia te 15 i te 12, ka -3.
2x-3y=-11,6x-3y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x-3y=-11
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=3y-11
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{2}\left(3y-11\right)
Whakawehea ngā taha e rua ki te 2.
x=\frac{3}{2}y-\frac{11}{2}
Whakareatia \frac{1}{2} ki te 3y-11.
6\left(\frac{3}{2}y-\frac{11}{2}\right)-3y=-3
Whakakapia te \frac{3y-11}{2} mō te x ki tērā atu whārite, 6x-3y=-3.
9y-33-3y=-3
Whakareatia 6 ki te \frac{3y-11}{2}.
6y-33=-3
Tāpiri 9y ki te -3y.
6y=30
Me tāpiri 33 ki ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te 6.
x=\frac{3}{2}\times 5-\frac{11}{2}
Whakaurua te 5 mō y ki x=\frac{3}{2}y-\frac{11}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{15-11}{2}
Whakareatia \frac{3}{2} ki te 5.
x=2
Tāpiri -\frac{11}{2} ki te \frac{15}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=5
Kua oti te pūnaha te whakatau.
2\left(x+1\right)-3y=-9
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
2x+2-3y=-9
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+1.
2x-3y=-9-2
Tangohia te 2 mai i ngā taha e rua.
2x-3y=-11
Tangohia te 2 i te -9, ka -11.
3x+15-3y+3x=12
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+5-y.
6x+15-3y=12
Pahekotia te 3x me 3x, ka 6x.
6x-3y=12-15
Tangohia te 15 mai i ngā taha e rua.
6x-3y=-3
Tangohia te 15 i te 12, ka -3.
2x-3y=-11,6x-3y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\6&-3\end{matrix}\right))\left(\begin{matrix}2&-3\\6&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\6&-3\end{matrix}\right))\left(\begin{matrix}-11\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\6&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\6&-3\end{matrix}\right))\left(\begin{matrix}-11\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\6&-3\end{matrix}\right))\left(\begin{matrix}-11\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-\left(-3\times 6\right)}&-\frac{-3}{2\left(-3\right)-\left(-3\times 6\right)}\\-\frac{6}{2\left(-3\right)-\left(-3\times 6\right)}&\frac{2}{2\left(-3\right)-\left(-3\times 6\right)}\end{matrix}\right)\left(\begin{matrix}-11\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\-\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-11\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-11\right)+\frac{1}{4}\left(-3\right)\\-\frac{1}{2}\left(-11\right)+\frac{1}{6}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=5
Tangohia ngā huānga poukapa x me y.
2\left(x+1\right)-3y=-9
Whakaarohia te whārite tuatahi. Whakareatia ngā taha e rua o te whārite ki te 3.
2x+2-3y=-9
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x+1.
2x-3y=-9-2
Tangohia te 2 mai i ngā taha e rua.
2x-3y=-11
Tangohia te 2 i te -9, ka -11.
3x+15-3y+3x=12
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+5-y.
6x+15-3y=12
Pahekotia te 3x me 3x, ka 6x.
6x-3y=12-15
Tangohia te 15 mai i ngā taha e rua.
6x-3y=-3
Tangohia te 15 i te 12, ka -3.
2x-3y=-11,6x-3y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x-6x-3y+3y=-11+3
Me tango 6x-3y=-3 mai i 2x-3y=-11 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2x-6x=-11+3
Tāpiri -3y ki te 3y. Ka whakakore atu ngā kupu -3y me 3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4x=-11+3
Tāpiri 2x ki te -6x.
-4x=-8
Tāpiri -11 ki te 3.
x=2
Whakawehea ngā taha e rua ki te -4.
6\times 2-3y=-3
Whakaurua te 2 mō x ki 6x-3y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
12-3y=-3
Whakareatia 6 ki te 2.
-3y=-15
Me tango 12 mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te -3.
x=2,y=5
Kua oti te pūnaha te whakatau.