Whakaoti mō y, x
x=1
y=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-5-3x=0
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-3x=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
2y-7x=9
Whakaarohia te whārite tuarua. Tangohia te 7x mai i ngā taha e rua.
y-3x=5,2y-7x=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-3x=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=3x+5
Me tāpiri 3x ki ngā taha e rua o te whārite.
2\left(3x+5\right)-7x=9
Whakakapia te 3x+5 mō te y ki tērā atu whārite, 2y-7x=9.
6x+10-7x=9
Whakareatia 2 ki te 3x+5.
-x+10=9
Tāpiri 6x ki te -7x.
-x=-1
Me tango 10 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -1.
y=3+5
Whakaurua te 1 mō x ki y=3x+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=8
Tāpiri 5 ki te 3.
y=8,x=1
Kua oti te pūnaha te whakatau.
y-5-3x=0
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-3x=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
2y-7x=9
Whakaarohia te whārite tuarua. Tangohia te 7x mai i ngā taha e rua.
y-3x=5,2y-7x=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-3\\2&-7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-3\\2&-7\end{matrix}\right))\left(\begin{matrix}1&-3\\2&-7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&-7\end{matrix}\right))\left(\begin{matrix}5\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-3\\2&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&-7\end{matrix}\right))\left(\begin{matrix}5\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\2&-7\end{matrix}\right))\left(\begin{matrix}5\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-7-\left(-3\times 2\right)}&-\frac{-3}{-7-\left(-3\times 2\right)}\\-\frac{2}{-7-\left(-3\times 2\right)}&\frac{1}{-7-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}5\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}5\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\times 5-3\times 9\\2\times 5-9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\1\end{matrix}\right)
Mahia ngā tātaitanga.
y=8,x=1
Tangohia ngā huānga poukapa y me x.
y-5-3x=0
Whakaarohia te whārite tuatahi. Tangohia te 3x mai i ngā taha e rua.
y-3x=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
2y-7x=9
Whakaarohia te whārite tuarua. Tangohia te 7x mai i ngā taha e rua.
y-3x=5,2y-7x=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2y+2\left(-3\right)x=2\times 5,2y-7x=9
Kia ōrite ai a y me 2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2y-6x=10,2y-7x=9
Whakarūnātia.
2y-2y-6x+7x=10-9
Me tango 2y-7x=9 mai i 2y-6x=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6x+7x=10-9
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=10-9
Tāpiri -6x ki te 7x.
x=1
Tāpiri 10 ki te -9.
2y-7=9
Whakaurua te 1 mō x ki 2y-7x=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
2y=16
Me tāpiri 7 ki ngā taha e rua o te whārite.
y=8
Whakawehea ngā taha e rua ki te 2.
y=8,x=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}