Whakaoti mō y, x
x=4\text{, }y=-1
x=1\text{, }y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-x=-5
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y-x=-5,x^{2}+y^{2}=17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-x=-5
Whakaotia te y-x=-5 mō y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=x-5
Me tango -x mai i ngā taha e rua o te whārite.
x^{2}+\left(x-5\right)^{2}=17
Whakakapia te x-5 mō te y ki tērā atu whārite, x^{2}+y^{2}=17.
x^{2}+x^{2}-10x+25=17
Pūrua x-5.
2x^{2}-10x+25=17
Tāpiri x^{2} ki te x^{2}.
2x^{2}-10x+8=0
Me tango 17 mai i ngā taha e rua o te whārite.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 2\times 8}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1+1\times 1^{2} mō a, 1\left(-5\right)\times 1\times 2 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 2\times 8}}{2\times 2}
Pūrua 1\left(-5\right)\times 1\times 2.
x=\frac{-\left(-10\right)±\sqrt{100-8\times 8}}{2\times 2}
Whakareatia -4 ki te 1+1\times 1^{2}.
x=\frac{-\left(-10\right)±\sqrt{100-64}}{2\times 2}
Whakareatia -8 ki te 8.
x=\frac{-\left(-10\right)±\sqrt{36}}{2\times 2}
Tāpiri 100 ki te -64.
x=\frac{-\left(-10\right)±6}{2\times 2}
Tuhia te pūtakerua o te 36.
x=\frac{10±6}{2\times 2}
Ko te tauaro o 1\left(-5\right)\times 1\times 2 ko 10.
x=\frac{10±6}{4}
Whakareatia 2 ki te 1+1\times 1^{2}.
x=\frac{16}{4}
Nā, me whakaoti te whārite x=\frac{10±6}{4} ina he tāpiri te ±. Tāpiri 10 ki te 6.
x=4
Whakawehe 16 ki te 4.
x=\frac{4}{4}
Nā, me whakaoti te whārite x=\frac{10±6}{4} ina he tango te ±. Tango 6 mai i 10.
x=1
Whakawehe 4 ki te 4.
y=4-5
E rua ngā otinga mō x: 4 me 1. Me whakakapi 4 mō x ki te whārite y=x-5 hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=-1
Tāpiri 1\times 4 ki te -5.
y=1-5
Me whakakapi te 1 ināianei mō te x ki te whārite y=x-5 ka whakaoti hei kimi i te otinga hāngai mō y e pai ai ki ngā whārite e rua.
y=-4
Tāpiri 1\times 1 ki te -5.
y=-1,x=4\text{ or }y=-4,x=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}