Whakaoti mō y, x
x = \frac{\sqrt{3} + 1}{2} \approx 1.366025404
y = \frac{\sqrt{3} + 1}{2} \approx 1.366025404
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-x=0
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y+x=\sqrt{3}+1
Whakaarohia te whārite tuarua. Me tāpiri te x ki ngā taha e rua.
y-x=0,y+x=\sqrt{3}+1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-x=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=x
Me tāpiri x ki ngā taha e rua o te whārite.
x+x=\sqrt{3}+1
Whakakapia te x mō te y ki tērā atu whārite, y+x=\sqrt{3}+1.
2x=\sqrt{3}+1
Tāpiri x ki te x.
x=\frac{\sqrt{3}+1}{2}
Whakawehea ngā taha e rua ki te 2.
y=\frac{\sqrt{3}+1}{2}
Whakaurua te \frac{\sqrt{3}+1}{2} mō x ki y=x. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{\sqrt{3}+1}{2},x=\frac{\sqrt{3}+1}{2}
Kua oti te pūnaha te whakatau.
y-x=0
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y+x=\sqrt{3}+1
Whakaarohia te whārite tuarua. Me tāpiri te x ki ngā taha e rua.
y-x=0,y+x=\sqrt{3}+1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-x-x=-\left(\sqrt{3}+1\right)
Me tango y+x=\sqrt{3}+1 mai i y-x=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-x-x=-\left(\sqrt{3}+1\right)
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2x=-\left(\sqrt{3}+1\right)
Tāpiri -x ki te -x.
x=\frac{\sqrt{3}+1}{2}
Whakawehea ngā taha e rua ki te -2.
y+\frac{\sqrt{3}+1}{2}=\sqrt{3}+1
Whakaurua te \frac{\sqrt{3}+1}{2} mō x ki y+x=\sqrt{3}+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{\sqrt{3}+1}{2}
Me tango \frac{\sqrt{3}+1}{2} mai i ngā taha e rua o te whārite.
y=\frac{\sqrt{3}+1}{2},x=\frac{\sqrt{3}+1}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}