Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-x=6
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y+3x=2
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
y-x=6,y+3x=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-x=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=x+6
Me tāpiri x ki ngā taha e rua o te whārite.
x+6+3x=2
Whakakapia te x+6 mō te y ki tērā atu whārite, y+3x=2.
4x+6=2
Tāpiri x ki te 3x.
4x=-4
Me tango 6 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 4.
y=-1+6
Whakaurua te -1 mō x ki y=x+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=5
Tāpiri 6 ki te -1.
y=5,x=-1
Kua oti te pūnaha te whakatau.
y-x=6
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y+3x=2
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
y-x=6,y+3x=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}1&-1\\1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&3\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-1\right)}&-\frac{-1}{3-\left(-1\right)}\\-\frac{1}{3-\left(-1\right)}&\frac{1}{3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{4}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 6+\frac{1}{4}\times 2\\-\frac{1}{4}\times 6+\frac{1}{4}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
y=5,x=-1
Tangohia ngā huānga poukapa y me x.
y-x=6
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y+3x=2
Whakaarohia te whārite tuarua. Me tāpiri te 3x ki ngā taha e rua.
y-x=6,y+3x=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-x-3x=6-2
Me tango y+3x=2 mai i y-x=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-x-3x=6-2
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4x=6-2
Tāpiri -x ki te -3x.
-4x=4
Tāpiri 6 ki te -2.
x=-1
Whakawehea ngā taha e rua ki te -4.
y+3\left(-1\right)=2
Whakaurua te -1 mō x ki y+3x=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y-3=2
Whakareatia 3 ki te -1.
y=5
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=5,x=-1
Kua oti te pūnaha te whakatau.