Whakaoti mō y, x
x=2150
y=2450
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-x=300
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y-x=300,0.07y+0.09x=365
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-x=300
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=x+300
Me tāpiri x ki ngā taha e rua o te whārite.
0.07\left(x+300\right)+0.09x=365
Whakakapia te x+300 mō te y ki tērā atu whārite, 0.07y+0.09x=365.
0.07x+21+0.09x=365
Whakareatia 0.07 ki te x+300.
0.16x+21=365
Tāpiri \frac{7x}{100} ki te \frac{9x}{100}.
0.16x=344
Me tango 21 mai i ngā taha e rua o te whārite.
x=2150
Whakawehea ngā taha e rua o te whārite ki te 0.16, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=2150+300
Whakaurua te 2150 mō x ki y=x+300. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=2450
Tāpiri 300 ki te 2150.
y=2450,x=2150
Kua oti te pūnaha te whakatau.
y-x=300
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y-x=300,0.07y+0.09x=365
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\0.07&0.09\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}300\\365\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\0.07&0.09\end{matrix}\right))\left(\begin{matrix}1&-1\\0.07&0.09\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.07&0.09\end{matrix}\right))\left(\begin{matrix}300\\365\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\0.07&0.09\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.07&0.09\end{matrix}\right))\left(\begin{matrix}300\\365\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\0.07&0.09\end{matrix}\right))\left(\begin{matrix}300\\365\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{0.09}{0.09-\left(-0.07\right)}&-\frac{-1}{0.09-\left(-0.07\right)}\\-\frac{0.07}{0.09-\left(-0.07\right)}&\frac{1}{0.09-\left(-0.07\right)}\end{matrix}\right)\left(\begin{matrix}300\\365\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.5625&6.25\\-0.4375&6.25\end{matrix}\right)\left(\begin{matrix}300\\365\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0.5625\times 300+6.25\times 365\\-0.4375\times 300+6.25\times 365\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2450\\2150\end{matrix}\right)
Mahia ngā tātaitanga.
y=2450,x=2150
Tangohia ngā huānga poukapa y me x.
y-x=300
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y-x=300,0.07y+0.09x=365
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
0.07y+0.07\left(-1\right)x=0.07\times 300,0.07y+0.09x=365
Kia ōrite ai a y me \frac{7y}{100}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 0.07 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
0.07y-0.07x=21,0.07y+0.09x=365
Whakarūnātia.
0.07y-0.07y-0.07x-0.09x=21-365
Me tango 0.07y+0.09x=365 mai i 0.07y-0.07x=21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-0.07x-0.09x=21-365
Tāpiri \frac{7y}{100} ki te -\frac{7y}{100}. Ka whakakore atu ngā kupu \frac{7y}{100} me -\frac{7y}{100}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-0.16x=21-365
Tāpiri -\frac{7x}{100} ki te -\frac{9x}{100}.
-0.16x=-344
Tāpiri 21 ki te -365.
x=2150
Whakawehea ngā taha e rua o te whārite ki te -0.16, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
0.07y+0.09\times 2150=365
Whakaurua te 2150 mō x ki 0.07y+0.09x=365. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
0.07y+193.5=365
Whakareatia 0.09 ki te 2150.
0.07y=171.5
Me tango 193.5 mai i ngā taha e rua o te whārite.
y=2450
Whakawehea ngā taha e rua o te whārite ki te 0.07, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=2450,x=2150
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}