Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-x=1
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y-x=1,-3y+2x=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-x=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=x+1
Me tāpiri x ki ngā taha e rua o te whārite.
-3\left(x+1\right)+2x=-3
Whakakapia te x+1 mō te y ki tērā atu whārite, -3y+2x=-3.
-3x-3+2x=-3
Whakareatia -3 ki te x+1.
-x-3=-3
Tāpiri -3x ki te 2x.
-x=0
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -1.
y=1
Whakaurua te 0 mō x ki y=x+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=1,x=0
Kua oti te pūnaha te whakatau.
y-x=1
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y-x=1,-3y+2x=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-1\\-3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-3&2\end{matrix}\right))\left(\begin{matrix}1\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-\left(-3\right)\right)}&-\frac{-1}{2-\left(-\left(-3\right)\right)}\\-\frac{-3}{2-\left(-\left(-3\right)\right)}&\frac{1}{2-\left(-\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}1\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2&-1\\-3&-1\end{matrix}\right)\left(\begin{matrix}1\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2-\left(-3\right)\\-3-\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Mahia ngā tātaitanga.
y=1,x=0
Tangohia ngā huānga poukapa y me x.
y-x=1
Whakaarohia te whārite tuatahi. Tangohia te x mai i ngā taha e rua.
y-x=1,-3y+2x=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3y-3\left(-1\right)x=-3,-3y+2x=-3
Kia ōrite ai a y me -3y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
-3y+3x=-3,-3y+2x=-3
Whakarūnātia.
-3y+3y+3x-2x=-3+3
Me tango -3y+2x=-3 mai i -3y+3x=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x-2x=-3+3
Tāpiri -3y ki te 3y. Ka whakakore atu ngā kupu -3y me 3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=-3+3
Tāpiri 3x ki te -2x.
x=0
Tāpiri -3 ki te 3.
-3y=-3
Whakaurua te 0 mō x ki -3y+2x=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=1
Whakawehea ngā taha e rua ki te -3.
y=1,x=0
Kua oti te pūnaha te whakatau.