Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-8x=-5
Whakaarohia te whārite tuatahi. Tangohia te 8x mai i ngā taha e rua.
y+7x=10
Whakaarohia te whārite tuarua. Me tāpiri te 7x ki ngā taha e rua.
y-8x=-5,y+7x=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-8x=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=8x-5
Me tāpiri 8x ki ngā taha e rua o te whārite.
8x-5+7x=10
Whakakapia te 8x-5 mō te y ki tērā atu whārite, y+7x=10.
15x-5=10
Tāpiri 8x ki te 7x.
15x=15
Me tāpiri 5 ki ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 15.
y=8-5
Whakaurua te 1 mō x ki y=8x-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=3
Tāpiri -5 ki te 8.
y=3,x=1
Kua oti te pūnaha te whakatau.
y-8x=-5
Whakaarohia te whārite tuatahi. Tangohia te 8x mai i ngā taha e rua.
y+7x=10
Whakaarohia te whārite tuarua. Me tāpiri te 7x ki ngā taha e rua.
y-8x=-5,y+7x=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-8\\1&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-8\\1&7\end{matrix}\right))\left(\begin{matrix}1&-8\\1&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&7\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-8\\1&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&7\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&7\end{matrix}\right))\left(\begin{matrix}-5\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-\left(-8\right)}&-\frac{-8}{7-\left(-8\right)}\\-\frac{1}{7-\left(-8\right)}&\frac{1}{7-\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}-5\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{15}&\frac{8}{15}\\-\frac{1}{15}&\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}-5\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{15}\left(-5\right)+\frac{8}{15}\times 10\\-\frac{1}{15}\left(-5\right)+\frac{1}{15}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
y=3,x=1
Tangohia ngā huānga poukapa y me x.
y-8x=-5
Whakaarohia te whārite tuatahi. Tangohia te 8x mai i ngā taha e rua.
y+7x=10
Whakaarohia te whārite tuarua. Me tāpiri te 7x ki ngā taha e rua.
y-8x=-5,y+7x=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-8x-7x=-5-10
Me tango y+7x=10 mai i y-8x=-5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8x-7x=-5-10
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-15x=-5-10
Tāpiri -8x ki te -7x.
-15x=-15
Tāpiri -5 ki te -10.
x=1
Whakawehea ngā taha e rua ki te -15.
y+7=10
Whakaurua te 1 mō x ki y+7x=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=3
Me tango 7 mai i ngā taha e rua o te whārite.
y=3,x=1
Kua oti te pūnaha te whakatau.