Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-8x=-18
Whakaarohia te whārite tuatahi. Tangohia te 8x mai i ngā taha e rua.
y-x=-4
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y-8x=-18,y-x=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-8x=-18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=8x-18
Me tāpiri 8x ki ngā taha e rua o te whārite.
8x-18-x=-4
Whakakapia te 8x-18 mō te y ki tērā atu whārite, y-x=-4.
7x-18=-4
Tāpiri 8x ki te -x.
7x=14
Me tāpiri 18 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 7.
y=8\times 2-18
Whakaurua te 2 mō x ki y=8x-18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=16-18
Whakareatia 8 ki te 2.
y=-2
Tāpiri -18 ki te 16.
y=-2,x=2
Kua oti te pūnaha te whakatau.
y-8x=-18
Whakaarohia te whārite tuatahi. Tangohia te 8x mai i ngā taha e rua.
y-x=-4
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y-8x=-18,y-x=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-18\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}-18\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-8\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}-18\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}-18\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-8\right)}&-\frac{-8}{-1-\left(-8\right)}\\-\frac{1}{-1-\left(-8\right)}&\frac{1}{-1-\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}-18\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{8}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-18\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\left(-18\right)+\frac{8}{7}\left(-4\right)\\-\frac{1}{7}\left(-18\right)+\frac{1}{7}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
Mahia ngā tātaitanga.
y=-2,x=2
Tangohia ngā huānga poukapa y me x.
y-8x=-18
Whakaarohia te whārite tuatahi. Tangohia te 8x mai i ngā taha e rua.
y-x=-4
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y-8x=-18,y-x=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-8x+x=-18+4
Me tango y-x=-4 mai i y-8x=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-8x+x=-18+4
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7x=-18+4
Tāpiri -8x ki te x.
-7x=-14
Tāpiri -18 ki te 4.
x=2
Whakawehea ngā taha e rua ki te -7.
y-2=-4
Whakaurua te 2 mō x ki y-x=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-2
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-2,x=2
Kua oti te pūnaha te whakatau.