Whakaoti mō y, p
y = \frac{2530}{9} = 281\frac{1}{9} \approx 281.111111111
p = \frac{850}{27} = 31\frac{13}{27} \approx 31.481481481
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-7.5p=45
Whakaarohia te whārite tuatahi. Tangohia te 7.5p mai i ngā taha e rua.
y+0.6p=300
Whakaarohia te whārite tuarua. Me tāpiri te 0.6p ki ngā taha e rua.
y-7.5p=45,y+0.6p=300
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-7.5p=45
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=7.5p+45
Me tāpiri \frac{15p}{2} ki ngā taha e rua o te whārite.
7.5p+45+0.6p=300
Whakakapia te \frac{15p}{2}+45 mō te y ki tērā atu whārite, y+0.6p=300.
8.1p+45=300
Tāpiri \frac{15p}{2} ki te \frac{3p}{5}.
8.1p=255
Me tango 45 mai i ngā taha e rua o te whārite.
p=\frac{850}{27}
Whakawehea ngā taha e rua o te whārite ki te 8.1, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y=7.5\times \frac{850}{27}+45
Whakaurua te \frac{850}{27} mō p ki y=7.5p+45. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{2125}{9}+45
Whakareatia 7.5 ki te \frac{850}{27} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{2530}{9}
Tāpiri 45 ki te \frac{2125}{9}.
y=\frac{2530}{9},p=\frac{850}{27}
Kua oti te pūnaha te whakatau.
y-7.5p=45
Whakaarohia te whārite tuatahi. Tangohia te 7.5p mai i ngā taha e rua.
y+0.6p=300
Whakaarohia te whārite tuarua. Me tāpiri te 0.6p ki ngā taha e rua.
y-7.5p=45,y+0.6p=300
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right)\left(\begin{matrix}y\\p\end{matrix}\right)=\left(\begin{matrix}45\\300\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right))\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right)\left(\begin{matrix}y\\p\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right))\left(\begin{matrix}45\\300\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\p\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right))\left(\begin{matrix}45\\300\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\p\end{matrix}\right)=inverse(\left(\begin{matrix}1&-7.5\\1&0.6\end{matrix}\right))\left(\begin{matrix}45\\300\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\p\end{matrix}\right)=\left(\begin{matrix}\frac{0.6}{0.6-\left(-7.5\right)}&-\frac{-7.5}{0.6-\left(-7.5\right)}\\-\frac{1}{0.6-\left(-7.5\right)}&\frac{1}{0.6-\left(-7.5\right)}\end{matrix}\right)\left(\begin{matrix}45\\300\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\p\end{matrix}\right)=\left(\begin{matrix}\frac{2}{27}&\frac{25}{27}\\-\frac{10}{81}&\frac{10}{81}\end{matrix}\right)\left(\begin{matrix}45\\300\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\p\end{matrix}\right)=\left(\begin{matrix}\frac{2}{27}\times 45+\frac{25}{27}\times 300\\-\frac{10}{81}\times 45+\frac{10}{81}\times 300\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\p\end{matrix}\right)=\left(\begin{matrix}\frac{2530}{9}\\\frac{850}{27}\end{matrix}\right)
Mahia ngā tātaitanga.
y=\frac{2530}{9},p=\frac{850}{27}
Tangohia ngā huānga poukapa y me p.
y-7.5p=45
Whakaarohia te whārite tuatahi. Tangohia te 7.5p mai i ngā taha e rua.
y+0.6p=300
Whakaarohia te whārite tuarua. Me tāpiri te 0.6p ki ngā taha e rua.
y-7.5p=45,y+0.6p=300
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-7.5p-0.6p=45-300
Me tango y+0.6p=300 mai i y-7.5p=45 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-7.5p-0.6p=45-300
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-8.1p=45-300
Tāpiri -\frac{15p}{2} ki te -\frac{3p}{5}.
-8.1p=-255
Tāpiri 45 ki te -300.
p=\frac{850}{27}
Whakawehea ngā taha e rua o te whārite ki te -8.1, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
y+0.6\times \frac{850}{27}=300
Whakaurua te \frac{850}{27} mō p ki y+0.6p=300. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+\frac{170}{9}=300
Whakareatia 0.6 ki te \frac{850}{27} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{2530}{9}
Me tango \frac{170}{9} mai i ngā taha e rua o te whārite.
y=\frac{2530}{9},p=\frac{850}{27}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}