Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-4x=-2
Whakaarohia te whārite tuatahi. Tangohia te 4x mai i ngā taha e rua.
y+x=18
Whakaarohia te whārite tuarua. Me tāpiri te x ki ngā taha e rua.
y-4x=-2,y+x=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-4x=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=4x-2
Me tāpiri 4x ki ngā taha e rua o te whārite.
4x-2+x=18
Whakakapia te 4x-2 mō te y ki tērā atu whārite, y+x=18.
5x-2=18
Tāpiri 4x ki te x.
5x=20
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 5.
y=4\times 4-2
Whakaurua te 4 mō x ki y=4x-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=16-2
Whakareatia 4 ki te 4.
y=14
Tāpiri -2 ki te 16.
y=14,x=4
Kua oti te pūnaha te whakatau.
y-4x=-2
Whakaarohia te whārite tuatahi. Tangohia te 4x mai i ngā taha e rua.
y+x=18
Whakaarohia te whārite tuarua. Me tāpiri te x ki ngā taha e rua.
y-4x=-2,y+x=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}1&-4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-4\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\right)}&-\frac{-4}{1-\left(-4\right)}\\-\frac{1}{1-\left(-4\right)}&\frac{1}{1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-2\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{4}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-2\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-2\right)+\frac{4}{5}\times 18\\-\frac{1}{5}\left(-2\right)+\frac{1}{5}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}14\\4\end{matrix}\right)
Mahia ngā tātaitanga.
y=14,x=4
Tangohia ngā huānga poukapa y me x.
y-4x=-2
Whakaarohia te whārite tuatahi. Tangohia te 4x mai i ngā taha e rua.
y+x=18
Whakaarohia te whārite tuarua. Me tāpiri te x ki ngā taha e rua.
y-4x=-2,y+x=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-4x-x=-2-18
Me tango y+x=18 mai i y-4x=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4x-x=-2-18
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5x=-2-18
Tāpiri -4x ki te -x.
-5x=-20
Tāpiri -2 ki te -18.
x=4
Whakawehea ngā taha e rua ki te -5.
y+4=18
Whakaurua te 4 mō x ki y+x=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=14
Me tango 4 mai i ngā taha e rua o te whārite.
y=14,x=4
Kua oti te pūnaha te whakatau.