Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-376x=0
Whakaarohia te whārite tuatahi. Tangohia te 376x mai i ngā taha e rua.
2y-32x=0
Whakaarohia te whārite tuarua. Tangohia te 32x mai i ngā taha e rua.
y-376x=0,2y-32x=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-376x=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=376x
Me tāpiri 376x ki ngā taha e rua o te whārite.
2\times 376x-32x=0
Whakakapia te 376x mō te y ki tērā atu whārite, 2y-32x=0.
752x-32x=0
Whakareatia 2 ki te 376x.
720x=0
Tāpiri 752x ki te -32x.
x=0
Whakawehea ngā taha e rua ki te 720.
y=0
Whakaurua te 0 mō x ki y=376x. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=0,x=0
Kua oti te pūnaha te whakatau.
y-376x=0
Whakaarohia te whārite tuatahi. Tangohia te 376x mai i ngā taha e rua.
2y-32x=0
Whakaarohia te whārite tuarua. Tangohia te 32x mai i ngā taha e rua.
y-376x=0,2y-32x=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-376\\2&-32\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-376\\2&-32\end{matrix}\right))\left(\begin{matrix}1&-376\\2&-32\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-376\\2&-32\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-376\\2&-32\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-376\\2&-32\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-376\\2&-32\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{32}{-32-\left(-376\times 2\right)}&-\frac{-376}{-32-\left(-376\times 2\right)}\\-\frac{2}{-32-\left(-376\times 2\right)}&\frac{1}{-32-\left(-376\times 2\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{45}&\frac{47}{90}\\-\frac{1}{360}&\frac{1}{720}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa.
y=0,x=0
Tangohia ngā huānga poukapa y me x.
y-376x=0
Whakaarohia te whārite tuatahi. Tangohia te 376x mai i ngā taha e rua.
2y-32x=0
Whakaarohia te whārite tuarua. Tangohia te 32x mai i ngā taha e rua.
y-376x=0,2y-32x=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2y+2\left(-376\right)x=0,2y-32x=0
Kia ōrite ai a y me 2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2y-752x=0,2y-32x=0
Whakarūnātia.
2y-2y-752x+32x=0
Me tango 2y-32x=0 mai i 2y-752x=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-752x+32x=0
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-720x=0
Tāpiri -752x ki te 32x.
x=0
Whakawehea ngā taha e rua ki te -720.
2y=0
Whakaurua te 0 mō x ki 2y-32x=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=0
Whakawehea ngā taha e rua ki te 2.
y=0,x=0
Kua oti te pūnaha te whakatau.