Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y+x=3
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+x=3,y-2x=6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y+x=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=-x+3
Me tango x mai i ngā taha e rua o te whārite.
-x+3-2x=6
Whakakapia te -x+3 mō te y ki tērā atu whārite, y-2x=6.
-3x+3=6
Tāpiri -x ki te -2x.
-3x=3
Me tango 3 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te -3.
y=-\left(-1\right)+3
Whakaurua te -1 mō x ki y=-x+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=1+3
Whakareatia -1 ki te -1.
y=4
Tāpiri 3 ki te 1.
y=4,x=-1
Kua oti te pūnaha te whakatau.
y+x=3
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+x=3,y-2x=6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\1&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}3\\6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3+\frac{1}{3}\times 6\\\frac{1}{3}\times 3-\frac{1}{3}\times 6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
y=4,x=-1
Tangohia ngā huānga poukapa y me x.
y+x=3
Whakaarohia te whārite tuatahi. Me tāpiri te x ki ngā taha e rua.
y+x=3,y-2x=6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y+x+2x=3-6
Me tango y-2x=6 mai i y+x=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
x+2x=3-6
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x=3-6
Tāpiri x ki te 2x.
3x=-3
Tāpiri 3 ki te -6.
x=-1
Whakawehea ngā taha e rua ki te 3.
y-2\left(-1\right)=6
Whakaurua te -1 mō x ki y-2x=6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y+2=6
Whakareatia -2 ki te -1.
y=4
Me tango 2 mai i ngā taha e rua o te whārite.
y=4,x=-1
Kua oti te pūnaha te whakatau.