Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-2x=-4
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
x+2y=1
Whakaarohia te whārite tuarua. Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y-2x=-4,2y+x=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-2x=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=2x-4
Me tāpiri 2x ki ngā taha e rua o te whārite.
2\left(2x-4\right)+x=1
Whakakapia te -4+2x mō te y ki tērā atu whārite, 2y+x=1.
4x-8+x=1
Whakareatia 2 ki te -4+2x.
5x-8=1
Tāpiri 4x ki te x.
5x=9
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=\frac{9}{5}
Whakawehea ngā taha e rua ki te 5.
y=2\times \frac{9}{5}-4
Whakaurua te \frac{9}{5} mō x ki y=2x-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{18}{5}-4
Whakareatia 2 ki te \frac{9}{5}.
y=-\frac{2}{5}
Tāpiri -4 ki te \frac{18}{5}.
y=-\frac{2}{5},x=\frac{9}{5}
Kua oti te pūnaha te whakatau.
y-2x=-4
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
x+2y=1
Whakaarohia te whārite tuarua. Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y-2x=-4,2y+x=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\2&1\end{matrix}\right))\left(\begin{matrix}1&-2\\2&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\times 2\right)}&-\frac{-2}{1-\left(-2\times 2\right)}\\-\frac{2}{1-\left(-2\times 2\right)}&\frac{1}{1-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-4\right)+\frac{2}{5}\\-\frac{2}{5}\left(-4\right)+\frac{1}{5}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\\\frac{9}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
y=-\frac{2}{5},x=\frac{9}{5}
Tangohia ngā huānga poukapa y me x.
y-2x=-4
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
x+2y=1
Whakaarohia te whārite tuarua. Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
y-2x=-4,2y+x=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2y+2\left(-2\right)x=2\left(-4\right),2y+x=1
Kia ōrite ai a y me 2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2y-4x=-8,2y+x=1
Whakarūnātia.
2y-2y-4x-x=-8-1
Me tango 2y+x=1 mai i 2y-4x=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-4x-x=-8-1
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5x=-8-1
Tāpiri -4x ki te -x.
-5x=-9
Tāpiri -8 ki te -1.
x=\frac{9}{5}
Whakawehea ngā taha e rua ki te -5.
2y+\frac{9}{5}=1
Whakaurua te \frac{9}{5} mō x ki 2y+x=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
2y=-\frac{4}{5}
Me tango \frac{9}{5} mai i ngā taha e rua o te whārite.
y=-\frac{2}{5}
Whakawehea ngā taha e rua ki te 2.
y=-\frac{2}{5},x=\frac{9}{5}
Kua oti te pūnaha te whakatau.