Tīpoka ki ngā ihirangi matua
Whakaoti mō y, x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

y-2x=-3
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
y-2x=-3,y+x=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-2x=-3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=2x-3
Me tāpiri 2x ki ngā taha e rua o te whārite.
2x-3+x=-6
Whakakapia te 2x-3 mō te y ki tērā atu whārite, y+x=-6.
3x-3=-6
Tāpiri 2x ki te x.
3x=-3
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 3.
y=2\left(-1\right)-3
Whakaurua te -1 mō x ki y=2x-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-2-3
Whakareatia 2 ki te -1.
y=-5
Tāpiri -3 ki te -2.
y=-5,x=-1
Kua oti te pūnaha te whakatau.
y-2x=-3
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
y-2x=-3,y+x=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}1&-2\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&1\end{matrix}\right))\left(\begin{matrix}-3\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-2\right)}&-\frac{-2}{1-\left(-2\right)}\\-\frac{1}{1-\left(-2\right)}&\frac{1}{1-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{2}{3}\\-\frac{1}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-3\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\left(-3\right)+\frac{2}{3}\left(-6\right)\\-\frac{1}{3}\left(-3\right)+\frac{1}{3}\left(-6\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
y=-5,x=-1
Tangohia ngā huānga poukapa y me x.
y-2x=-3
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
y-2x=-3,y+x=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
y-y-2x-x=-3+6
Me tango y+x=-6 mai i y-2x=-3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-2x-x=-3+6
Tāpiri y ki te -y. Ka whakakore atu ngā kupu y me -y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3x=-3+6
Tāpiri -2x ki te -x.
-3x=3
Tāpiri -3 ki te 6.
x=-1
Whakawehea ngā taha e rua ki te -3.
y-1=-6
Whakaurua te -1 mō x ki y+x=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=-5
Me tāpiri 1 ki ngā taha e rua o te whārite.
y=-5,x=-1
Kua oti te pūnaha te whakatau.