Whakaoti mō y, x
x=10
y=20
Graph
Tohaina
Kua tāruatia ki te papatopenga
y-2x=0
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
y-2x=0,200y+300x=7000
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
y-2x=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
y=2x
Me tāpiri 2x ki ngā taha e rua o te whārite.
200\times 2x+300x=7000
Whakakapia te 2x mō te y ki tērā atu whārite, 200y+300x=7000.
400x+300x=7000
Whakareatia 200 ki te 2x.
700x=7000
Tāpiri 400x ki te 300x.
x=10
Whakawehea ngā taha e rua ki te 700.
y=2\times 10
Whakaurua te 10 mō x ki y=2x. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=20
Whakareatia 2 ki te 10.
y=20,x=10
Kua oti te pūnaha te whakatau.
y-2x=0
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
y-2x=0,200y+300x=7000
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&-2\\200&300\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\7000\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}1&-2\\200&300\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}0\\7000\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&-2\\200&300\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}0\\7000\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\200&300\end{matrix}\right))\left(\begin{matrix}0\\7000\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{300}{300-\left(-2\times 200\right)}&-\frac{-2}{300-\left(-2\times 200\right)}\\-\frac{200}{300-\left(-2\times 200\right)}&\frac{1}{300-\left(-2\times 200\right)}\end{matrix}\right)\left(\begin{matrix}0\\7000\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{1}{350}\\-\frac{2}{7}&\frac{1}{700}\end{matrix}\right)\left(\begin{matrix}0\\7000\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{350}\times 7000\\\frac{1}{700}\times 7000\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}20\\10\end{matrix}\right)
Mahia ngā tātaitanga.
y=20,x=10
Tangohia ngā huānga poukapa y me x.
y-2x=0
Whakaarohia te whārite tuatahi. Tangohia te 2x mai i ngā taha e rua.
y-2x=0,200y+300x=7000
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
200y+200\left(-2\right)x=0,200y+300x=7000
Kia ōrite ai a y me 200y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 200 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
200y-400x=0,200y+300x=7000
Whakarūnātia.
200y-200y-400x-300x=-7000
Me tango 200y+300x=7000 mai i 200y-400x=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-400x-300x=-7000
Tāpiri 200y ki te -200y. Ka whakakore atu ngā kupu 200y me -200y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-700x=-7000
Tāpiri -400x ki te -300x.
x=10
Whakawehea ngā taha e rua ki te -700.
200y+300\times 10=7000
Whakaurua te 10 mō x ki 200y+300x=7000. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
200y+3000=7000
Whakareatia 300 ki te 10.
200y=4000
Me tango 3000 mai i ngā taha e rua o te whārite.
y=20
Whakawehea ngā taha e rua ki te 200.
y=20,x=10
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}